Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
関西大学総合情報学部 浅野 晃 画像情報処理 2024年度秋学期 第1回 イントロダクション
Slide 2
Slide 2 text
画像処理と画像科学
Slide 3
Slide 3 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像処理は手軽にできます 3 背景をぼかす ちょっとやりすぎ💦💦 これは,かなり前に手作業で作ったものですが, いまでは,スマホ📱📱でもほぼ自動でできます。
Slide 4
Slide 4 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像処理は手軽にできます 4 この写真は,近景🍰🍰☕と背景🌳🌳を別のカメラで撮影して, 背景をぼかして近景と合成しています。 こういう写真も,スマホ📱📱で簡単に撮れるようになりました。 技術はどんどん進んでいきます。 この講義では,基盤になる数学を説明します。
Slide 5
Slide 5 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デジタル画像とは 5
Slide 6
Slide 6 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デジタル画像とは 5
Slide 7
Slide 7 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デジタル画像とは 5 画像は,離散的な点(画素, pixel)の集まりでできている
Slide 8
Slide 8 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デジタル画像とは 5 画像は,離散的な点(画素, pixel)の集まりでできている
Slide 9
Slide 9 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デジタル画像とは 5 画像は,離散的な点(画素, pixel)の集まりでできている 60 60 60 65 65 65 70 70 70
Slide 10
Slide 10 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デジタル画像とは 5 画像は,離散的な点(画素, pixel)の集まりでできている 60 60 60 65 65 65 70 70 70 各画素は,明るさ(輝度)を表す 整数である
Slide 11
Slide 11 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デジタル画像とは 5 画像は,離散的な点(画素, pixel)の集まりでできている 60 60 60 65 65 65 70 70 70 各画素は,明るさ(輝度)を表す 整数である ※カラー画像の1画素=3原色のそれぞれの輝度を表す整数
Slide 12
Slide 12 text
第1部 画像とフーリエ変換
Slide 13
Slide 13 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像を明暗の波に分解 7 人は,大まかな形の違いは 気になるが,細かい部分の 差は気にならない 世の中の画像は,波の足し合わ せでできていると考えられる なぜならば 光は「波」だから 心理的理由 物理的理由 「細かい部分」は 細かい波で表される なぜ,波で理解しようとする?
Slide 14
Slide 14 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像の生成(結像) 8 画像は回折格子の重ね合わせであり, それぞれの回折格子で回折された光が像面で干渉して,画像が再現される
Slide 15
Slide 15 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像の生成(結像) 8 画像は回折格子の重ね合わせであり, それぞれの回折格子で回折された光が像面で干渉して,画像が再現される 画像は回折格子,すなわち波の重ね合わせである
Slide 16
Slide 16 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像の生成(結像) 8 画像は回折格子の重ね合わせであり, それぞれの回折格子で回折された光が像面で干渉して,画像が再現される 画像は回折格子,すなわち波の重ね合わせである どんな波が重ね合わされているかを求める計算が[フーリエ変換]
Slide 17
Slide 17 text
第2部 画像情報圧縮
Slide 18
Slide 18 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像情報圧縮の必要性 10 この画像では,1画素の明るさを0〜255の整数で表す カラー画像ならば,R,G,Bで3倍必要 1画素に,2進数8桁 = 8ビット = 1バイト必要 1000万画素のデジタル画像は,約10メガバイト必要 こういう画像は,1画素 = 16ビットで, 2倍の20メガバイト必要なこともある 動画ならば,1秒でこのデータ量の30倍?60倍?120倍?
Slide 19
Slide 19 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 JPEG方式による画像圧縮 11 画像を波の重ね合わせで表わし,一部を省略して,データ量を減らす
Slide 20
Slide 20 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 JPEG方式による画像圧縮 11 画像を波の重ね合わせで表わし,一部を省略して,データ量を減らす 8×8ピクセルずつの セルに分解
Slide 21
Slide 21 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 JPEG方式による画像圧縮 11 画像を波の重ね合わせで表わし,一部を省略して,データ量を減らす ひとつのセルを, これらの波の重ね合わせで表す 8×8ピクセルずつの セルに分解
Slide 22
Slide 22 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 JPEG方式による画像圧縮 11 画像を波の重ね合わせで表わし,一部を省略して,データ量を減らす ひとつのセルを, これらの波の重ね合わせで表す 8×8ピクセルずつの セルに分解
Slide 23
Slide 23 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 JPEG方式による画像圧縮 11 画像を波の重ね合わせで表わし,一部を省略して,データ量を減らす ひとつのセルを, これらの波の重ね合わせで表す 8×8ピクセルずつの セルに分解 細かい部分は,どの画像でも大してかわらないから,省略しても気づかない
Slide 24
Slide 24 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 JPEG方式による画像圧縮 11 画像を波の重ね合わせで表わし,一部を省略して,データ量を減らす ひとつのセルを, これらの波の重ね合わせで表す 8×8ピクセルずつの セルに分解 細かい部分は,どの画像でも大してかわらないから,省略しても気づかない
Slide 25
Slide 25 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 JPEG方式による画像圧縮 11 画像を波の重ね合わせで表わし,一部を省略して,データ量を減らす ひとつのセルを, これらの波の重ね合わせで表す 8×8ピクセルずつの セルに分解 細かい部分は,どの画像でも大してかわらないから,省略しても気づかない 省略すると,データ量が減る
Slide 26
Slide 26 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 画像情報圧縮の例 12 データ量:80KB データ量:16KB (8×8ピクセルのセルが見える) (とても古い画像)
Slide 27
Slide 27 text
第3部 CTスキャナ — 投影からの画像の再構成
Slide 28
Slide 28 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 CTスキャナとは 14 CT(computed tomography) = 計算断層撮影法 体の周囲からX線撮影を行い,そのデータから断面像を計算で求める Aquilion Precision (キャノンメディカルシステムズ) https://jp.medical.canon/general/What_is_CT
Slide 29
Slide 29 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 CTを実現するには 15 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s ある方向からX線を照射し,その方向での 吸収率(投影)を調べる すべての方向からの投影がわかれば,元の物体 における吸収率分布がわかる(Radonの定理)
Slide 30
Slide 30 text
第4部 視覚と色彩
Slide 31
Slide 31 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 「色」は身近なものだけれど 17 赤緑青の「三原色」を組み合わせれば,どんな色でも表せる?🤔🤔 「色」は,光の波長で決まっている?🤔🤔
Slide 32
Slide 32 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 「色」は身近なものだけれど 17 赤緑青の「三原色」を組み合わせれば,どんな色でも表せる?🤔🤔 いいえ。 この3色をつかえば「割合広い範囲の」色が表せるだけで, それでも表せない色はあります。 「色」は,光の波長で決まっている?🤔🤔
Slide 33
Slide 33 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 「色」は身近なものだけれど 17 赤緑青の「三原色」を組み合わせれば,どんな色でも表せる?🤔🤔 いいえ。 この3色をつかえば「割合広い範囲の」色が表せるだけで, それでも表せない色はあります。 「色」は,光の波長で決まっている?🤔🤔 いいえ。 波長590nmくらいの光は黄色に見えますが, 赤(700nmくらい)と緑(550nmくらい)の光を混ぜても同じ黄色に見えます。
Slide 34
Slide 34 text
18 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 色彩学は,物理学で生理学で心理学 18 波長590nmくらいの光は黄色に見えますが, 赤(700nmくらい)と緑(550nmくらい)の光を混ぜても同じ黄色に見えます。 これは,人の眼のしくみのため。 人の眼には,色を感じる細胞は3種類しかなく, それで可視光のすべての波長域をカバーしている さらに,人は色を見て暖色・寒色といった 現実とは異なる感覚を感じる