Slide 17
Slide 17 text
Python Landscape for Coarse-grained Parallelism
• Rich ecosystem depending on your problem:
o https://wiki.python.org/moin/ParallelProcessing
o batchlib, Celery, Deap, disco, dispy, DistributedPython, exec_proxy, execnet,
IPython Parallel, jug, mpi4py, PaPy, pyMPI, pypar, pypvm, Pyro, rthread,
SCOOP, seppo, superspy
• Python stdlib options:
o multiprocessing (since 2.6)
o concurrent.futures (introduced in 3.2, backported to 2.7)
• Common throughout:
o Separate Python processes to achieve parallel execution