Slide 1

Slide 1 text

Efficient Learned Deconvolution of Radio Interferometric Images Using Deep Unrolling Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 14 mars 2025 Efficient Learned Deconvolution of Radio Interferometric Images Using Deep Unrolling Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 14 mars 2025

Slide 2

Slide 2 text

1. Introduction 2. Algorithm unrolling for image reconstruction 3. CARB : Efficient uncertainty quantification 4. Conclusion Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 2 / 31

Slide 3

Slide 3 text

New very large radio-interferometric observatory are being constructed such as SKA SKA-Mid : 197 planned dishes SKA-Low : 131,072 planned antennas A massive data processing challenge 20 terabits per second of data generated : 1,000 × the data rate of ALMA Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 3 / 31 Towards large-scale radio-data

Slide 4

Slide 4 text

Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 4 / 31 Radio-interferometry

Slide 5

Slide 5 text

y = Ax + n y : visibilities x : sky image A : Forward operator (De)Gridding & Fourier transform n is a white Gaussian noise ∗ = = ⨀ True image PSF Dirty image Visibilities UV coverage Observed visibilities ℱ ℱ−1 ⇆ Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 5 / 31 Radio-interferometry model

Slide 6

Slide 6 text

We aim to reconstruct the true image x Minimization problem arg min x ∥y − Ax∥2 2 y : visibilities, A : forward operator Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 6 / 31 Image reconstruction problem

Slide 7

Slide 7 text

We aim to reconstruct the true image x Minimization problem arg min x ∥y − Ax∥2 2 y : visibilities, A : forward operator An ill posed problem We need to add constraint on x arg min x ∥y − Ax∥2 2 + R (x) Different types of constraint possible : sparsity (in various domain), learned regularizer, ... Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 6 / 31 Image reconstruction problem

Slide 8

Slide 8 text

CLEAN algorithm (Högbom, 1974) ■ Mostly used on point sources ■ Detection of one peak in the image at a time Compressive sensing methods (Wiaux, 2009) Iterative algorithm using proximal operators for minimizing the regularization term ie, with R (x) = ∥x∥1 : zt+1 = xt − 2¸A∗(y − Axt ) , Forward step xt+1 = ST–¸ (zt+1) , Backward step (¸ : gradient step, – : threshold) Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 7 / 31 Existing methods

Slide 9

Slide 9 text

PnP : Plug and Play (Terris et al., 2022) The prox operator can be replaced by a pretrained DNN xt+1 = D(xt − 2¸A∗(y − Axt )) End to end DNN (Schuler, 2013) / Learned post-processing Apply a DNN on the dirty image ■ A lot faster than iterative algorithms ■ Require a lot of training data ■ Not model-based –> worse performance Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 8 / 31 Existing methods with learned components

Slide 10

Slide 10 text

PnP : Plug and Play (Terris et al., 2022) The prox operator can be replaced by a pretrained DNN xt+1 = D(xt − 2¸A∗(y − Axt )) End to end DNN (Schuler, 2013) / Learned post-processing Apply a DNN on the dirty image ■ A lot faster than iterative algorithms ■ Require a lot of training data ■ Not model-based –> worse performance Need for a method as fast a DNNs but taking into account the physic reconstruction model for best performance Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 8 / 31 Existing methods with learned components

Slide 11

Slide 11 text

1. Introduction 2. Algorithm unrolling for image reconstruction 3. CARB : Efficient uncertainty quantification 4. Conclusion Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 9 / 31

Slide 12

Slide 12 text

Unrolling (Gregor, 2011) We unroll an iterative algorithm for L iterations and convert it as a L layers DNN One layer –> One iteration Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 10 / 31 Algorithm unrolling

Slide 13

Slide 13 text

Proximal Gradient Descent (PGD) : ˜ xl+1 = prox( ˜ xl + 2¸A∗( ˜ y − A ˜ xl )) , until convergence or max iteration is reached ¸ : gradient step Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 11 / 31 Algorithm unrolling for RI

Slide 14

Slide 14 text

Proximal Gradient Descent (PGD) : ˜ xl+1 = prox( ˜ xl + 2¸A∗( ˜ y − A ˜ xl )) , until convergence or max iteration is reached ¸ : gradient step We unroll the PGD algorithm to obtain a Learned PGD : ˜ xl+1 = gl ( ˜ xl + wl ∗ A∗( ˜ y − A ˜ xl )) , for l from 1 to L gl Trainable or pre-trained operator wl Trainable scalar or convolution kernel Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 11 / 31 Algorithm unrolling for RI

Slide 15

Slide 15 text

We can also add an inertial term as in FISTA : ˜ xl+1 = gl ( ˜ xl + wl ∗ A∗( ˜ y − A ˜ xl )) ˜ xl+1 = ( ˜ xl + βl ( ˜ xl − ˜ xl )) gl Trainable or pre-trained operator wl Trainable convolution kernel ˛l Trainable scalar Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 12 / 31 Algorithm unrolling for RI

Slide 16

Slide 16 text

We can also add an inertial term as in FISTA : ˜ xl+1 = gl ( ˜ xl + wl ∗ A∗( ˜ y − A ˜ xl )) ˜ xl+1 = ( ˜ xl + βl ( ˜ xl − ˜ xl )) gl Trainable or pre-trained operator wl Trainable convolution kernel ˛l Trainable scalar Loss function L = 1 Ntrain Ntrain X i=0 ‚ ‚ ‚ xtrue i − xpredicted i ‚ ‚ ‚ 2 2 ‚ ‚xtrue i ‚ ‚ 2 2 Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 12 / 31 Algorithm unrolling for RI

Slide 17

Slide 17 text

To work directly with visibilities we use a Non-Uniform FFT : Kaisser-Bessel Gridding + FFT One layer of our unrolled DNN : Denoiser Which denoiser to choose? Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 13 / 31 Our unrolled DNN

Slide 18

Slide 18 text

For point sources : R (x) = ∥x∥1 Soft thresholding gl (x) = (0, if|x| ≤ ‚l |x − ‚l|, otherwise ‚l is a trainable parameter Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 14 / 31 Different kind of regularization operators

Slide 19

Slide 19 text

For point sources : R (x) = ∥x∥1 Soft thresholding gl (x) = (0, if|x| ≤ ‚l |x − ‚l|, otherwise ‚l is a trainable parameter For more complex sources : R (x) = P i ∥Ψi x∥1 We seek sparsity in a dictionary of wavelet bases (for example the first eight Daubechies wavelets) Wavelet denoiser gl (x) = argmin u ∥u − x∥2 2 + –l X i ∥Ψi u∥1 , –l is the learned regularization/thresholding parameter Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 14 / 31 Different kind of regularization operators

Slide 20

Slide 20 text

For more complex images g can be replaced by a pretrained deep denoiser. D can for example be a UNet : PnP prior gl (x) = D(x, ff) ff is a learned noise level parameter Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 15 / 31 Different kind of regularization operators

Slide 21

Slide 21 text

Two types of data ■ Simulated point sources : randomly generated with 1% of sources following absolute gaussian distribution for each image ■ Galaxy simulation Simulated UV coverage based on MEERKAT antennas - 1h observation time Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 16 / 31 Experiments Setup

Slide 22

Slide 22 text

True Reconstructed Absolute Error Y 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.000 0.002 0.004 0.006 0.008 0.010 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.02 0.04 0.06 0.08 0.10 0.000 0.002 0.004 0.006 0.008 0.010 Dirty images generated with SNR=15dB Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 17 / 31 Simulated point sources

Slide 23

Slide 23 text

We compare several reconstruction method ■ FISTA-like with a wavelet prior ˜ xl+1 = g( ˜ xl + 2¸A∗(y − Axl )) ˜ xl+1 = ( ˜ xl + βl ( ˜ xl − ˜ xl )) ■ PnP : PGD with a DRUNet denoiser as prior ˜ xl+1 = D( ˜ xl + 2¸A∗(y − Axl )) ■ End to End DNN (Restormer) applied to dirty image A∗y ■ Unrolled FISTA with DRUNet denoiser xl+1 = D([xl + w ∗ A∗(y − Axl )]) ˜ xl+1 = ( ˜ xl + βl ( ˜ xl − ˜ xl )) Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 18 / 31 Realistic astronomical images

Slide 24

Slide 24 text

True image Dirty image UV coverage FISTA wavelet PSNR : 42.5dB PnP PSNR : 44.0dB Restormer PSNR : 27.4dB Unrolling PSNR : 44.1dB Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 19 / 31 Realistic astronomical images

Slide 25

Slide 25 text

True image Dirty image UV coverage FISTA wavelet PSNR : 43.0dB PnP PSNR : 46.8dB Restormer PSNR : 25.5dB Unrolling PSNR : 46.5dB Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 20 / 31 Realistic astronomical images

Slide 26

Slide 26 text

FISTA wavelet PGD DRUNet Unrolling Wavelet Unrolling DRUNet 30 35 40 45 50 PSNR (dB) Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 21 / 31 Galaxy simulations : Importance of the prior

Slide 27

Slide 27 text

Unrolling results : ■ Greatly reduced computation budget (10× less iterations) ■ Great reconstruction quality Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 22 / 31 Faster reconstruction : algorithm unrolling

Slide 28

Slide 28 text

Unrolling results : ■ Greatly reduced computation budget (10× less iterations) ■ Great reconstruction quality Unrolling drawbacks : ■ Lost interpretation of the reconstruction ■ Is it the fixed point of an equation? ■ Is the reconstruction related to a posterior probability distribution? ■ UQ is missing These drawbacks limit its scientific application Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 22 / 31 Faster reconstruction : algorithm unrolling

Slide 29

Slide 29 text

1. Introduction 2. Algorithm unrolling for image reconstruction 3. CARB : Efficient uncertainty quantification 4. Conclusion Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 23 / 31

Slide 30

Slide 30 text

Based on the equivariant Bootstrap framework of Tachella & Pereyra (2024) Given an observation model y = Ax + n (e.g. RI imaging), group actions {Tg}g∈G such that Tg x ∈ X and a reconstruction method ˆ x(y) = f(y) (e.g. our unrolling algorithm) : For i = 1, ... , N : 1. Draw transform gi from G and sample noise ni ∼ N (0, ff2I) 2. Build bootsrap measurement ˜ yi = ATgi ˆ x(y) + ni = Agi ˆ x(y) + ni 3. Reconstruct ˜ xi = T−1 gi ˆ x(˜ yi ) 4. Collect error estimate ei = ∥ˆ x(y) − ˜ xi ∥2 Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 24 / 31 CARB : Conformalized Augmented Radio Bootstrap

Slide 31

Slide 31 text

Motivation : ■ Unsupervised method → No ground truth required ■ Independent of the reconstruction method and each sample can run in parallel ■ Well-suited to ultra-fast reconstruction methods, e.g. unrolled algorithms ■ Carefully selected group transforms allow us to explore the big nullspace of the RI imaging forward operator and better characterise the errors CARB method consists of : 1. Fast reconstruction algorithm 2. Equivariant bootstrap framework 3. Adapted group actions for the RI imaging problem 4. Conformalisation procedure to guarantee coverage Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 25 / 31 CARB : Conformalized Augmented Radio Bootstrap

Slide 32

Slide 32 text

The group actions we consider are : 1. Circular shift translations not exceeding 2 pixels, 2. Image flips over the horizontal and vertical axis, 3. Rotations of 90-degrees multiples, 4. Invertible 2D radially-symmetric filters in the specific form of low-shelving and high-shelving filters with varying cuttoff frequencies. Examples of filter transformations : 0 20 40 60 80 100 120 Frequency 0.0 0.2 0.4 0.6 0.8 1.0 Amplitude Low-shelving filters High-shelving filters Each time we apply a random composition of these transformations, where each transformation is applied with a given probability. Pixel-wise UQ maps From the collection of N bootstrap samples, {˜ xi }N i=1 , we build confidence regions, C¸ , for x (ground truth) using q¸ the top ¸-quantile of the samples {|ˆ x(y) − ˜ x|}N i=1 , with C¸ = {x : |x − ˆ x(y)| < q¸}. Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 26 / 31 CARB : Conformalized Augmented Radio Bootstrap

Slide 33

Slide 33 text

Uncertainty quantification performance comparison (90% confidence interval) Method Length Coverage Quantile Regression (QR) 0.15 14% Conformalized QR 204.08 92% Parametric Bootstrap 0.07 0% Equivariant Bootstrap 0.13 7% Augmented Radio Bootstrap 0.29 87% CARB 0.34 91% Coverage plots for equivariant bootstrap methods with different group actions. 0.0 0.2 0.4 0.6 0.8 1.0 Confidence level 0.0 0.2 0.4 0.6 0.8 1.0 Empirical coverage Parametric Rotations Rotations and flips Rotations and flips and 1-shifts Rotations and flips and 2-shifts Rotations and flips and 3-shifts Augmented Radio Bootstrap Ideal Tight intervals and very good coverage! Results showcase : ■ the importance of selecting adapted group actions, ■ the conformalisation is useful once the intervals are already good. We still need to validate the method on higher dimensions. Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 27 / 31 CARB : Results

Slide 34

Slide 34 text

Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 28 / 31 CARB : Qualitative UQ comparison

Slide 35

Slide 35 text

1. Introduction 2. Algorithm unrolling for image reconstruction 3. CARB : Efficient uncertainty quantification 4. Conclusion Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 29 / 31

Slide 36

Slide 36 text

Conclusion : ■ Efficient reconstruction method for radio interferometric images using algorithm unrolling ■ Faster than current iterative methods (∼ 10 iterations) ■ Capable of working directly with visibilities ■ Can work with uncertainty quantification method Perspectives : ■ Apply unrolling method and UQ on bigger, realistic images ■ Improve design of network for better performance and adaptability Jonathan Kern, Jérome Bobin, Tobias Liaudat Christophe Kervazo GT ICR SKA 20/06/2024 30 / 31 Conclusion and perspectives

Slide 37

Slide 37 text

Thank you for your attention CEA SACLAY 91 191 Gif-sur-Yvette Cedex France [email protected]