Slide 1

Slide 1 text

Programs That Eat Programs Michael R. Bernstein February 24th, 2015 Software GR, Grand Rapids, MI w michaelrbernste.in t @mrb_bk

Slide 2

Slide 2 text

I’m Obsessed

Slide 3

Slide 3 text

I’m Obsessed

Slide 4

Slide 4 text

I’m Obsessed

Slide 5

Slide 5 text

I have a podcast

Slide 6

Slide 6 text

Static analysis is my day job

Slide 7

Slide 7 text

I live in College Park, Maryland

Slide 8

Slide 8 text

Programs That Eat Programs

Slide 9

Slide 9 text

Programs That Eat Programs

Slide 10

Slide 10 text

What Is A Program?

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

Programs

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

Math

Slide 20

Slide 20 text

Math is Cool

Slide 21

Slide 21 text

“Introduction to Lattices and Order” Davey & Priestley

Slide 22

Slide 22 text

“Ordered Sets and Complete Lattices: A Primer for Computer Science” Priestley

Slide 23

Slide 23 text

A ______ is a _______ with a _______

Slide 24

Slide 24 text

Partial Order

Slide 25

Slide 25 text

Set Theory

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

Partially Ordered Sets

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

Lattices

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

Monotonicity

Slide 32

Slide 32 text

Galois Connections

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

Very Cool Math

Slide 35

Slide 35 text

“Principles of Program Analysis” Nielson, Nielson & Hankin

Slide 36

Slide 36 text

What Is A Program?

Slide 37

Slide 37 text

Programs That Eat Programs

Slide 38

Slide 38 text

How Do You Eat One?

Slide 39

Slide 39 text

Interpreters

Slide 40

Slide 40 text

“Essentials of Programming Languages” Friedman & Wand

Slide 41

Slide 41 text

“Abstracting Abstract Machines” Van Horn and Might

Slide 42

Slide 42 text

From a concrete interpreter to an abstract interpreter

Slide 43

Slide 43 text

type Σ = (Exp,Env,Store,Kont) type Env = Var :-> Addr data Storable = Clo (Lambda, Env) type Store = Addr :-> Storable data Kont = Mt | Ar (Exp,Env,Kont) | Fn (Lambda,Env,Kont) type Addr = Int

Slide 44

Slide 44 text

step :: Σ -> Σ step (Ref x, ρ, σ, κ) = (Lam lam, ρ', σ, κ) where Clo (lam, ρ') = σ!(ρ!x) step (f :@ e, ρ, σ, κ) = (f, ρ, σ, Ar(e, ρ, κ)) step (Lam lam,ρ,σ,Ar(e, ρ', κ)) = (e, ρ', σ, Fn(lam, ρ, κ)) step (Lam lam,ρ,σ,Fn(x :=> e, ρ', κ)) = (e, ρ' // [x ==> a'], σ // [a' ==> Clo (lam, ρ)], κ) where a' = alloc(σ)

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

Static Analysis

Slide 47

Slide 47 text

As long as we’ve been writing programs, we’ve been writing programs to analyze our programs

Slide 48

Slide 48 text

As long as we’ve been writing programs, we’ve been writing programs that eat programs

Slide 49

Slide 49 text

What Do We Hope To Learn?

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

State space exploration

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

Soundness

Slide 56

Slide 56 text

“In Defense of Soundiness: A Manifesto” Livshits, Sridharan,et. al.

Slide 57

Slide 57 text

Soundiness

Slide 58

Slide 58 text

Higher-Order PLs

Slide 59

Slide 59 text

Practicality

Slide 60

Slide 60 text

Semantics Matter!

Slide 61

Slide 61 text

Brakeman - Rails Security Scanner

Slide 62

Slide 62 text

The Future

Slide 63

Slide 63 text

SMT Solvers

Slide 64

Slide 64 text

Why write code and then generate proofs when you could write proofs and generate code?

Slide 65

Slide 65 text

Takeaways

Slide 66

Slide 66 text

Works Cited https://gist.github.com/mrb/e015c37e2b851be2b6ae

Slide 67

Slide 67 text

Thank You w michaelrbernste.in t @mrb_bk