Slide 1

Slide 1 text

T E L E M E T R Y enhancing & unlocking new potential in OSM

Slide 2

Slide 2 text

OV E RV I E W what is telemetry? how does Mapbox handle telemetry data? what we can calculate from telemetry data? what are the use cases? traffic

Slide 3

Slide 3 text

T E L E M E T RY any data collected from a remote device [lng, lat, alt, timestamp] telemetry pipeline clock GPS sensor +

Slide 4

Slide 4 text

“probe” [x, y, z, t] P RO B E VS . T R AC E

Slide 5

Slide 5 text

“trace” [ [x, y, z, t], [x, y, z, t], [x, y, z, t], [x, y, z, t] ] P RO B E VS . T R AC E

Slide 6

Slide 6 text

A N O N Y M I S AT I O N

Slide 7

Slide 7 text

A N O N Y M I S AT I O N

Slide 8

Slide 8 text

A N O N Y M I S AT I O N

Slide 9

Slide 9 text

A N O N Y M I S AT I O N

Slide 10

Slide 10 text

P R I VAC Y only store anonymised data data is encrypted using industry best practice clear boundaries around who has access & for what reason audit-able access logs more info – https://www.mapbox.com/telemetry/

Slide 11

Slide 11 text

“probe” [x, y, z, t] “trace” [ [x, y, z, t], [x, y, z, t], [x, y, z, t], [x, y, z, t] ]

Slide 12

Slide 12 text

B E A R I N G

Slide 13

Slide 13 text

speed = distance duration S P E E D d ∆t

Slide 14

Slide 14 text

acceleration = ∆speed duration AC C E L E R AT I O N

Slide 15

Slide 15 text

U S E C A S E S

Slide 16

Slide 16 text

VO LU M E from probe density missing streets satellite imagery alignment health of satellite imagery

Slide 17

Slide 17 text

VO LU M E from probe density missing streets satellite imagery alignment health of satellite imagery

Slide 18

Slide 18 text

VO LU M E from probe density missing streets satellite imagery alignment health of satellite imagery telemetry density raster satellite imagery edge detection edge detection vertical offset horizontal offset *

Slide 19

Slide 19 text

VO LU M E from probe density missing streets satellite imagery alignment health of satellite imagery telemetry density poor imagery quality

Slide 20

Slide 20 text

M A N E U V E R S from trace density restrictions (turns, one-ways) high-precision trajectory of lane centreline for ADAS traces present absence of traces

Slide 21

Slide 21 text

M A N E U V E R S from trace density restrictions (turns, one-ways) high-precision trajectory of lane centreline for ADAS

Slide 22

Slide 22 text

T R A F F I C from speed, bearing, acceleration road congestion traffic-aware navigation

Slide 23

Slide 23 text

T R A F F I C from speed, bearing, acceleration road congestion traffic-aware navigation

Slide 24

Slide 24 text

T R A F F I C

Slide 25

Slide 25 text

W H Y T R A F F I C origin destination estimated trip duration (ETA) date-time traffic-powered OSRM OSRM public demo server

Slide 26

Slide 26 text

LUA P RO F I L E rule-based static 100% road coverage

Slide 27

Slide 27 text

T R A F F I C P RO F I L E telemetry-based dynamic coverage fluctuates (never 100%)

Slide 28

Slide 28 text

N O I S E R E M OVA L duration distance speed bearing deceleration acceleration modality

Slide 29

Slide 29 text

P RO B E M ATC H distance from road bearing from road highway hierarchy

Slide 30

Slide 30 text

P RO B E M ATC H distance from road bearing from road highway hierarchy

Slide 31

Slide 31 text

P RO B E M ATC H distance from road bearing from road highway hierarchy

Slide 32

Slide 32 text

P RO B E M ATC H distance from road bearing from road highway hierarchy higher rank lower rank

Slide 33

Slide 33 text

P RO B E M ATC H tertiary road distance from road bearing from road highway hierarchy

Slide 34

Slide 34 text

N O R M A L I S E D G R A P H traffic data uses split at road class change intersection merge otherwise.

Slide 35

Slide 35 text

N O R M A L I S E D G R A P H traffic data uses split at road class change intersection merge otherwise.

Slide 36

Slide 36 text

N O R M A L I S E D G R A P H traffic data uses split at road class change intersection merge otherwise.

Slide 37

Slide 37 text

0 20 40 60 80 100 120 140 160 Speed [kph] Count [-] W H I C H S P E E D

Slide 38

Slide 38 text

0 20 40 60 80 100 120 140 160 Count [-] W H I C H S P E E D primary secondary tertiary motorway trunk links alleys service roads …etc. Speed [kph]

Slide 39

Slide 39 text

N O R M A L I S E D G R A P H traffic data uses

Slide 40

Slide 40 text

E D G E - BA S E D G R A P H OSRM uses transform maneuver → edge street → node

Slide 41

Slide 41 text

segments N O R M A L I S E D G R A P H traffic data uses E D G E - BA S E D G R A P H OSRM uses

Slide 42

Slide 42 text

segments N O R M A L I S E D G R A P H traffic data uses E D G E - BA S E D G R A P H OSRM uses T R A F F I C M A P S I N C I D E N T S T U R N P E N A LT I E S R E A LT I M E T R A F F I C VO LU M E

Slide 43

Slide 43 text

T E L E M E T RY ETA, error percentile, etc. layer against road network & attributes road network & attributes better, fresh satellite imagery where to focus (proactive) what is suspicious (proactive) where/what is an issue (reactive) where imagery is outdated DATA T E A M DATA T E A M S AT E L L I T E T E A M traffic