Slide 1

Slide 1 text

C R O W D S O U R C I N G ACC U R AT E LY A N D R O B U ST LY P R E D I C T S S U P R E M E CO U RT D E C I S I O N S DA N I E L M A RT I N KATZ | I L L I N O I S T E C H + STA N F O R D CO D E X M I C H A E L B O M M A R I TO | I L L I N O I S T E C H + STA N F O R D CO D E X J O S H B L AC K M A N | S O U T H T E X A S CO L L E G E O F L AW 0.4 0.5 0.6 0.7 0.8 0.9 2012 2013 2014 2015 2016 2017 Date of Decison Case Level Cumulative Accuracy By Model Type Model Type Model 1 Model 2 Model 3 Model 4 Null Model

Slide 2

Slide 2 text

DANIEL MARTIN KATZ E D U | I L L I N O I S T E C H + S TA N F O R D C O D E X B LO G | C O M P U TAT I O N A L L E GA L S T U D I E S . C O M PAG E | DA N I E L M A R T I N K AT Z . C O M C O R P | L E X P R E D I C T. C O M MICHAEL BOMMARITO E D U | I L L I N O I S T E C H + S TA N F O R D C O D E X B LO G | C O M P U TAT I O N A L L E GA L S T U D I E S . C O M PAG E | B O M M A R I TO L LC . C O M C O R P | L E X P R E D I C T. C O M JOSH BLACKMAN E D U | S O U T H T E X A S C O L L E G E O F L AW H O U S TO N B LO G | J O S H B L AC K M A N . C O M PAG E | J O S H B L AC K M A N . C O M / B LO G C O R P | L E X P R E D I C T. C O M

Slide 3

Slide 3 text

H T T P S : / / A R X I V. O RG / A B S / 1712 . 0 3 84 6 H T T P S : / / PA P E R S . S S R N . C O M / S O L 3 / PA P E R S . C F M ? A B S T R AC T _ I D = 3 0 8 5710

Slide 4

Slide 4 text

O U R PA P E R I S A B O U T P R E D I C T I N G T H E D E C I S I O N S O F T H E S U P R E M E CO U RT O F T H E U N I T E D STAT E S #SCOTUS

Slide 5

Slide 5 text

JUDICIAL PREDICTION IS THE LAW + POLITICS GRAIL QUEST

Slide 6

Slide 6 text

YOU COULD START WITH HOLMES AND THE LEGAL REALISTS BUT THESE WERE *NOT* REALLY SCIENTIFIC EFFORTS

Slide 7

Slide 7 text

FRED KORT, PREDICTING SUPREME COURT DECISIONS MATHEMATICALLY: A QUANTITATIVE ANALYSIS OF THE “RIGHT TO COUNSEL” CASES, 51 AMER. POL. SCI. REV. 1 (1957). 1957 S. SIDNEY ULMER, QUANTITATIVE ANALYSIS OF JUDICIAL PROCESSES: SOME PRACTICAL AND THEORETICAL APPLICATIONS, 28 LAW & CONTEMP. PROBS. 164 (1963). 1963 A CO U P L E O F E A R LY E F F O RT S

Slide 8

Slide 8 text

COMPUTERWORLD JULY 1971 PROGRAM WRITTEN IN FORTRAN (THE 91% PREDICTION MARK WAS LIMITED TO CERTAIN CASES) HAROLD SPAETH

Slide 9

Slide 9 text

JEFFREY A. SEGAL, PREDICTING S U P R E M E C O U R T C A S E S PROBABILISTICALLY: THE SEARCH AND SEIZURE CASES, 1962-1981, 78 AMERICAN POLITICAL SCIENCE REVIEW 891 (1984) 1984 A N I M P O RTA N T L AT E R E F F O RT

Slide 10

Slide 10 text

Columbia Law Review (2004) Theodore W. Ruger, Pauline T. Kim, Andrew D. Martin, Kevin M. Quinn Legal and Political Science Approaches to Predicting Supreme Court Decision Making The Supreme Court Forecasting Project: B U T T H I S WA S T H E PA P E R T H AT I N S P I R E D O U R E F F O RT S 2004

Slide 11

Slide 11 text

http://journals.plos.org/plosone/article? id=10.1371/journal.pone.0174698 available at RESEARCH ARTICLE A general approach for predicting the behavior of the Supreme Court of the United States Daniel Martin Katz1,2*, Michael J. Bommarito II1,2, Josh Blackman3 1 Illinois Tech - Chicago-Kent College of Law, Chicago, IL, United States of America, 2 CodeX - The Stanford Center for Legal Informatics, Stanford, CA, United States of America, 3 South Texas College of Law Houston, Houston, TX, United States of America * dkatz3@kentlaw.iit.edu Abstract Building on developments in machine learning and prior work in the science of judicial pre- diction, we construct a model designed to predict the behavior of the Supreme Court of the United States in a generalized, out-of-sample context. To do so, we develop a time-evolving random forest classifier that leverages unique feature engineering to predict more than 240,000 justice votes and 28,000 cases outcomes over nearly two centuries (1816-2015). Using only data available prior to decision, our model outperforms null (baseline) models at both the justice and case level under both parametric and non-parametric tests. Over nearly two centuries, we achieve 70.2% accuracy at the case outcome level and 71.9% at the jus- tice vote level. More recently, over the past century, we outperform an in-sample optimized null model by nearly 5%. Our performance is consistent with, and improves on the general level of prediction demonstrated by prior work; however, our model is distinctive because it can be applied out-of-sample to the entire past and future of the Court, not a single term. Our results represent an important advance for the science of quantitative legal prediction and portend a range of other potential applications. Introduction As the leaves begin to fall each October, the first Monday marks the beginning of another term for the Supreme Court of the United States. Each term brings with it a series of challenging, important cases that cover legal questions as diverse as tax law, freedom of speech, patent law, administrative law, equal protection, and environmental law. In many instances, the Court’s decisions are meaningful not just for the litigants per se, but for society as a whole. Unsurprisingly, predicting the behavior of the Court is one of the great pastimes for legal and political observers. Every year, newspapers, television and radio pundits, academic jour- nals, law reviews, magazines, blogs, and tweets predict how the Court will rule in a particular case. Will the Justices vote based on the political preferences of the President who appointed them or form a coalition along other dimensions? Will the Court counter expectations with an unexpected ruling? PLOS ONE | https://doi.org/10.1371/journal.pone.0174698 April 12, 2017 1 / 18 a1111111111 a1111111111 a1111111111 a1111111111 a1111111111 OPEN ACCESS Citation: Katz DM, Bommarito MJ, II, Blackman J (2017) A general approach for predicting the behavior of the Supreme Court of the United States. PLoS ONE 12(4): e0174698. https://doi. org/10.1371/journal.pone.0174698 Editor: Luı ´s A. Nunes Amaral, Northwestern University, UNITED STATES Received: January 17, 2017 Accepted: March 13, 2017 Published: April 12, 2017 Copyright: © 2017 Katz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: Data and replication code are available on Github at the following URL: https://github.com/mjbommar/scotus-predict-v2/. Funding: The author(s) received no specific funding for this work. Competing interests: All Authors are Members of a LexPredict, LLC which provides consulting services to various legal industry stakeholders. We received no financial contributions from LexPredict or anyone else for this paper. This does not alter our adherence to PLOS ONE policies on sharing data and materials. DANIEL MARTIN KATZ, MICHAEL J. BOMMARITO II & JOSH BLACKMAN, A GENERAL APPROACH FOR PREDICTING THE BEHAVIOR OF THE SUPREME COURT OF THE UNITED STATES, PLOS ONE 12.4 (2017): E0174698. APRIL 2017 T H I S I S O U R A LG O PA P E R

Slide 12

Slide 12 text

JULY 2017 AARON KAUFMAN, PETER KRAFT, AND MAYA SEN. “IMPROVING SUPREME COURT FORECASTING USING BOOSTED DECISION TREES”. HTTP://J.MP/2NRJTO6 T H E R E A R E A L S O S O M E OT H E R N OTA B L E R E C E N T E F F O RT S

Slide 13

Slide 13 text

DECEMBER 2017 DIETRICH, BRYCE J., RYAN D. ENOS, AND MAYA SEN.. “EMOTIONAL AROUSAL PREDICTS VOTING ON THE U.S. SUPREME COURT.” POLITICAL ANALYSIS (FORTHCOMING) T H E R E A R E A L S O S O M E OT H E R N OTA B L E R E C E N T E F F O RT S

Slide 14

Slide 14 text

T H E S O U R C E CO D E F O R O U R A LG O PA P E R I S AVA I L A B L E O N

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

W E CA L L O U R A LG O PA P E R A ‘ G E N E R A L’ A P P R OAC H

Slide 17

Slide 17 text

B E CAU S E W E A R E N OT I N T E R E ST E D I N A LO CA L LY T U N E D M O D E L B U T R AT H E R A M O D E L T H AT CA N ‘ STA N D T H E T E ST O F T I M E ’

Slide 18

Slide 18 text

G E N E R A L S COT U S P R E D I C T I O N 243,882 28,009 Case Outcomes Justice Votes 1816-2015

Slide 19

Slide 19 text

W E P R E D I C T * N OT * A S I N G L E Y E A R B U T R AT H E R ~ 2 0 0 Y E A R S ( 1 8 1 6 - 2 0 1 5 ) O U T O F S A M P L E

Slide 20

Slide 20 text

N O W I T I S WO RT H N OT I N G T H AT P R E D I C T I O N O R I E N T E D PA P E R S A R E C U R R E N T LY S W I M M I N G AG A I N ST M A I N ST R E A M S O C I A L S C I E N C E ( A N D L AW )

Slide 21

Slide 21 text

CAU S A L I N F E R E N C E I S T H E H A L L M A R K O F M O ST Q UA N T O R I E N T E D L AW + S O C I A L S C I E N C E S C H O L A R S H I P

Slide 22

Slide 22 text

I T I S B E ST S U I T E D TO P O L I CY E VA LUAT I O N ( S U C H A S D O E S T H I S PA RT I C U L A R P O L I CY I N T E RV E N T I O N AC H I E V E I T S STAT E D O B J E C T I V E S )

Slide 23

Slide 23 text

O R I N STA N C E S W H E R E E STA B L I S H I N G L I N K S B E T W E E N CAU S E A N D E F F E C T A R E C R I T I CA L

Slide 24

Slide 24 text

B U T T H E R E I S A N A LT E R N AT I V E PA R A D I G M # P R E D I C T I O N

Slide 25

Slide 25 text

M AC H I N E L E A R N I N G P R E D I C T I V E A N A LY T I C S ‘ I N V E R S E ’ P R O B L E M B -S C H O O L CO M P S C I P H Y S I C S P R E D I C T I O N

Slide 26

Slide 26 text

Andrew D. Martin, Kevin M. Quinn, Theodore W. Ruger & Pauline T. Kim, Competing Approaches to Predicting Supreme Court Decision Making, 2 Perspectives on Politics 761 (2004). “the best test of an explanatory theory is its ability to predict future events. To the extent that scholars in both disciplines (social science and law) seek to explain court behavior, they ought to test their theories not only against cases already decided, but against future outcomes as well.”

Slide 27

Slide 27 text

https://www.computationallegalstudies.com/2017/08/28/legal-analytics-versus-empirical- legal-studies-causal-inference-vs-prediction/ https://www.slideshare.net/Danielkatz/legal-analytics-versus-empirical- legal-studies-or-causal-inference-vs-prediction-redux M O R E O N T H AT TO P I C H E R E

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

T H E R E I S G R O W I N G I N T E R E ST I N T H E P R E D I C T I O N C E N T R I C A P P R OAC H

Slide 30

Slide 30 text

“There are two cultures in the use of statistical modeling to reach conclusions from data. One assumes that the data are generated by a given stochastic data model. The other uses algorithmic models and treats the data mechanism as unknown …. If our goal as a field is to use data to solve problems, then we need to move away from exclusive dependence on data models and adopt a more diverse set of tools.” Leo Breiman, Statistical modeling: The two cultures (with comments and a rejoinder by the author), 16 Statistical Science 199 (2001) Note: Leo Breiman Invented Random Forests

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Susan Athey, The Impact of Machine Learning on Economics http://www.nber.org/chapters/c14009.pdf

Slide 37

Slide 37 text

3 5 5 S C I E N C E 6 3 2 4 3 F E B R UA R Y 2 0 1 7 S P E C I A L I S S U E O N P R E D I C T I O N

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

T H E T H R E E F O R M S O F ( L E G A L ) P R E D I C T I O N

Slide 40

Slide 40 text

T H E R E A R E O N LY T H R E E F O R M S O F P R E D I C T I O N E X P E RT S , C R O W D S , A LG O R I T H M S

Slide 41

Slide 41 text

P R E D I C T I O N I S N OT N E C E S S A R I LY # M L A LO N E B U T R AT H E R S O M E E N S E M B L E O F E X P E RT S , C R O W D S + A LG O R I T H M S

Slide 42

Slide 42 text

http://www.sciencemag.org/news/ 2017/05/artificial-intelligence-prevails- predicting-supreme-court-decisions Professor Katz noted that in the long term …“We believe the blend of experts, crowds, and algorithms is the secret sauce for the whole thing.” May 2nd 2017

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

I N T H I S PA P E R W E A R E F O C U S E D U P O N R E V E A L E D E X P E RT S A N D C R O W D S

Slide 45

Slide 45 text

H T T P S : / / A R X I V. O RG / A B S / 1712 . 0 3 84 6 H T T P S : / / PA P E R S . S S R N . C O M / S O L 3 / PA P E R S . C F M ? A B S T R AC T _ I D = 3 0 8 5710

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

THE STRUCTURE FOR TODAY I. INTRODUCTION II. DATA + TOURNAMENT OVERVIEW III. CROWD CONSTRUCTION FRAMEWORK IV. MODEL TESTING + RESULTS V. CONCLUSION + FUTURE WORK

Slide 48

Slide 48 text

DATA + TOURNAMENT OVERVIEW

Slide 49

Slide 49 text

FA N TA SY S COT U S I S A S CO O L A S I T S O U N D S

Slide 50

Slide 50 text

FA N TA SY S COT U S WA S F O U N D E D B Y J O S H B L AC K M A N I N 2 0 0 9

Slide 51

Slide 51 text

P R I Z E S A N D S P O N S O R S H I P H AV E VA R I E D B U T T H E R E H AV E B E E N T E N S O F T H O U S A N D S O F $ $ A N D P R I Z E S D I ST R I B U T E D OV E R T H E Y E A R S

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

U S E R S C R E AT E A LO G I N A N D ACC E S S T H E S I T E

Slide 55

Slide 55 text

O N A CA S E B Y CA S E B A S I S , U S E R S CA N E N T E R T H E I R R E S P E C T I V E P R E D I C T I O N S

Slide 56

Slide 56 text

U S E R S A R E F R E E TO C H A N G E T H E I R P R E D I C T I O N S U N T I L T H E DAT E O F F I N A L D E C I S I O N

Slide 57

Slide 57 text

https://fivethirtyeight.com/features/obamacares- chances-of-survival-are-looking-better-and-better/ ( S O M E T I M E S I N I N T E R E ST I N G WAY S A S S H O W N A B OV E ) U S E R S A R E F R E E TO C H A N G E T H E I R P R E D I C T I O N S U N T I L T H E DAT E O F F I N A L D E C I S I O N

Slide 58

Slide 58 text

F O R E AC H CA S E , W E A R E A B L E TO T R AC K TO P E R F O R M A N C E O F P L AY E R S A N D CO M PA R E I T TO T H E O U TCO M E O F T H E CA S E S

Slide 59

Slide 59 text

A S W E H AV E D O N E W I T H O U R L E G A L A . I . P R O D U C T S …

Slide 60

Slide 60 text

W E W I L L A N O N Y M I Z E A N D T H E N O P E N S O U R C E P L AY E R P R E D I C T I O N DATA TO S U P P O RT ACA D E M I C R E S E A R C H I N TO P R E D I C T I O N , C R O W D S O U R C I N G , E TC .

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

S U M M A R Y STAT I ST I C S

Slide 63

Slide 63 text

6 S COT U S T E R M S

Slide 64

Slide 64 text

4 2 5 L I ST E D CA S E S 6 S COT U S T E R M S

Slide 65

Slide 65 text

7 2 8 4 U N I Q U E PA RT I C I PA N T S 4 2 5 L I ST E D CA S E S 6 S COT U S T E R M S

Slide 66

Slide 66 text

7 2 8 4 U N I Q U E PA RT I C I PA N T S 4 2 5 L I ST E D CA S E S 6 3 6 8 5 9 P R E D I C T I O N S 6 S COT U S T E R M S

Slide 67

Slide 67 text

W E H AV E A S I G N I F I CA N T A M O U N T O F P L AY E R T U R N OV E R WO R K I N G W I T H R E A L DATA ( ~ 3 % O F M A X PA RT I C I PAT I O N )

Slide 68

Slide 68 text

S O M E T I M E S F O L K S C H A N G E T H E I R VOT E S 6 3 6 8 5 9 5 4 5 8 4 5 F I N A L P R E D I C T I O N S OV E R A L L P R E D I C T I O N S WO R K I N G W I T H R E A L DATA

Slide 69

Slide 69 text

T H E N U M B E R O F P L AY E R S H A S D E C L I N E D B U T T H E E N G AG E M E N T R AT E H A S I N C R E A S E D WO R K I N G W I T H R E A L DATA

Slide 70

Slide 70 text

W E B E L I E V E T H I S I S * N OT * R E A L LY S U RV I VO R S H I P B I A S B U T R AT H E R A R E V E L AT I O N M E C H A N I S M ( I . E . YO U ST I C K A R O U N D I F T H I N K YO U A R E G O O D AT T H E U N D E R LY I N G TA S K )

Slide 71

Slide 71 text

S U M M A R Y DATA

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

CROWD MODELING PRINCIPLES

Slide 74

Slide 74 text

C R O W D S O U R C I N G C R O W D S O U R C I N G D O E S * N OT * R E F E R TO A S P E C I F I C T E C H N I Q U E O R A LG O R I T H M

Slide 75

Slide 75 text

C R O W D S O U R C I N G G E N E R A L LY R E F E R S TO A P R O C E S S O F AG G R E G AT I O N A N D / O R S E G M E N TAT I O N O F I N F O R M AT I O N S I G N A L S

Slide 76

Slide 76 text

VA R I O U S S I G N A L TY P E S T H E I N P U T S I G N A L S CA N A S S U M E M A N Y D I F F E R E N T F O R M S I N C LU D I N G F R O M M O D E L S O R I N D I V I D UA L S O R S E N S O R S ( O R S O M E CA S E S E V E N OT H E R C R O W D S )

Slide 77

Slide 77 text

CROWD OF INDIVIDUALS The most well know approach involves extracting ‘wisdom’ from crowds where crowds are built from individual people

Slide 78

Slide 78 text

CROWD OF SENSORS Note crowds need not be composed of humans but could be networked IT systems Decentralized Distributed Ledgers -or- Oracles -or- IOT sensors with Crowdsourcing Validation #Blockchain #InternetofThings #Crypto

Slide 79

Slide 79 text

#CRYPTO CROWD Thanks to Team Augur for the Shoutout

Slide 80

Slide 80 text

CRYPTO CROWDS? For most applications, crowdsourcing could produce *better* performance but the biggest challenge is the coordination costs

Slide 81

Slide 81 text

CRYPTO CROWDS? Sometimes getting even a second opinion in medicine (or any professional service) is very challenging — obtaining a 100th opinion is practically impossible

Slide 82

Slide 82 text

CRYPTO CROWDS? Among other things Crypto Infrastructure (Blockchain) might provide the mechanism necessary to lower the coordination costs in crowd constructuion

Slide 83

Slide 83 text

MORE ON THAT TOPIC HERE BLOCKCHAINLAWCLASS.COM

Slide 84

Slide 84 text

Random Forest Model Breiman, L.(2001). Random forests. Machine learning, 45(1), 5-32. Grow a set of differentiated trees through bagging and random substrates (predict using a consensus mechanism) C R O W D O F M O D E L S

Slide 85

Slide 85 text

C R O W D O F M O D E L S Each Poll has a slightly different methodology and historic performance (can be aggregated in various ways )

Slide 86

Slide 86 text

Poll Aggregation (note not always successful) C R O W D O F M O D E L S Each Poll has a slightly different methodology and historic performance (can be aggregated in various ways )

Slide 87

Slide 87 text

No content

Slide 88

Slide 88 text

A S W E R E V I E W E D T H E C R O W D S O U R C I N G L I T E R AT U R E …

Slide 89

Slide 89 text

W E O B S E RV E D T H AT I T WA S D I F F I C U LT TO A P P LY T H E P R I N C I P L E S TO C R O W D S S U C H A S O U R S

Slide 90

Slide 90 text

C R O W D S O U R C I N G I S ‘ U N D I S C I P L I N E D ZO O O F M O D E L S ’ J E S S I CA F L AC K P R O F E S S O R S A N TA F E I N ST I T U T E D E C . 2 7 , 2 0 1 7 ( V I A T W I T T E R )

Slide 91

Slide 91 text

W E AG R E E … A N D T H U S I N T H E PA P E R W E J U ST STA RT E D OV E R …

Slide 92

Slide 92 text

A N D AT T E M P T E D TO B U I L D C R O W D S F R O M F I R ST P R I N C I P L E S …

Slide 93

Slide 93 text

No content

Slide 94

Slide 94 text

T H R E E M A J O R M O D E L I N G P R I N C I P L E S

Slide 95

Slide 95 text

M U ST CO N F R O N T P R O P E R I T E S O F E M P I R I CA L DATA ( 1 )

Slide 96

Slide 96 text

O U T O F S A M P L E M U ST O F F E R O N LY T H E H I STO R I CA L LY AVA I L A B L E I N F O R M AT I O N S E T TO T H E P R E D I C TO R S ( 2 )

Slide 97

Slide 97 text

A P P LY A N E M P I R I CA L M O D E L T H I N K I N G A P P R OAC H M O D E L S PAC E S I N G L E M O D E L ( 3 ) >

Slide 98

Slide 98 text

No content

Slide 99

Slide 99 text

CROWD CONSTRUCTION FRAMEWORK

Slide 100

Slide 100 text

W E O U T L I N E A G E N E R A L F R A M E WO R K F O R CO N ST R U C T I N G C R O W D S F R O M F I R ST P R I N C I P L E S

Slide 101

Slide 101 text

I N T H E C L A S S I C CO N D O R C E T J U R Y S E T T I N G , M O D E L S TY P I CA L LY U S E P R E D I C T I O N S F R O M A L L PA RT I C I PA N T S

Slide 102

Slide 102 text

H O W E V E R , M O D E L S CA N A L S O TA K E I N TO ACCO U N T I N F O R M AT I O N ( S I G N A L S ) F R O M S O M E S U B S E T O F PA RT I C I PA N T S ( D E F I N E D U S I N G E I T H E R I N C LU S I O N R U L E S O R E XC LU S I O N R U L E S )

Slide 103

Slide 103 text

No content

Slide 104

Slide 104 text

E X P E R I E N C E P E R F O R M A N C E R A N K STAT I ST I CA L T H R E S H O L D I N G W E I G H T I N G C R O W D CO N ST R U C T I O N R U L E S

Slide 105

Slide 105 text

E X P E R I E N C E W E CO U L D I M P O S E A R E Q U I R E M E N T T H AT I N O R D E R TO B E I N C LU D E D I N T H E C R O W D, A P L AY E R M U ST H AV E E X P E R I E N C E - P R E D I C T E D AT L E A ST P CA S E S

Slide 106

Slide 106 text

R A N K W E CA N R A N K T H E PA RT I C I PA N T S W I T H I N T H E OV E R A L L C R O W D O R A C R O W D S U B S E T ACCO R D I N G TO S O M E R A N K F U N C T I O N FOLLOW THE LEADER PLAYER N

Slide 107

Slide 107 text

P E R F O R M A N C E W E CO U L D I M P O S E A R E Q U I R E M E N T T H AT I N O R D E R TO B E I N C LU D E D I N T H E C R O W D - A P L AY E R M U ST H AV E AC H I E V E D S O M E M I N I M U M P E R F O R M A N C E T H R E S H O L D

Slide 108

Slide 108 text

STAT I ST I CA L T H R E S H O L D I N G W E CO U L D I M P O S E A R E Q U I R E M E N T T H AT I N O R D E R TO B E I N C LU D E D I N T H E C R O W D - A P L AY E R M U ST H AV E D E M O ST R AT E D STAT I ST I CA L LY S I G N I F I CA N T P E R F O R M A N C E

Slide 109

Slide 109 text

W E I G H T I N G I N T H E S I M P L E CA S E , W E CA N AV E R AG E . A LT E R N AT I V E LY, W E CA N S E L E C T A W E I G H T I N G S C H E M E W H I C H U P W E I G H T S P R E D I C TO R S B A S E D U P O N S O M E C R I T E R I A .

Slide 110

Slide 110 text

C R O W D CO N ST R U C T I O N R U L E S T H E I N T E R AC T I O N O F T H E S E R U L E S Y I E L D S * N OT * A N I N D I V I D UA L M O D E L B U T R AT H E R A M O D E L S PAC E

Slide 111

Slide 111 text

T H E M O D E L S PAC E M O D E L S PAC E F E AT U R E S 2 7 7 , 2 0 1 P OT E N T I A L M O D E L S

Slide 112

Slide 112 text

T H E M O D E L S PAC E 1 + ( 2 8 · 9 9 · 1 0 0 ) = 2 7 7 2 0 1 F I R ST T E R M I S T H E S I M P L E ST C R O W D S O U R C I N G M O D E L W I T H N O S U B S E T O R W E I G H T I N G R U L E S S E CO N D T E R M CO R R E S P O N D S TO 2 8 M O D E L S ( CO M B I N AT I O N O F P E R F O R M A N C E T H R E S H O L D / W E I G H T I N G R U L E S ) F O R E AC H CO M B I N AT I O N O F 9 9 R A N K A N D 1 0 0 E X P E R I E N C E T H R E S H O L D S

Slide 113

Slide 113 text

No content

Slide 114

Slide 114 text

MODEL TESTING & RESULTS

Slide 115

Slide 115 text

W E S I M U L AT E T H E P E R F O R M A N C E O F * E AC H * O F T H E 2 7 7 , 2 0 1 P OT E N T I A L C R O W D M O D E L S M O D E L ( S ) ACC U R ACY

Slide 116

Slide 116 text

A LT H O U G H I T I S A L A R G E M O D E L S PAC E W E D O H I G H L I G H T T H E P E R F O R M A N C E O F F O U R E X A M P L E M O D E L S ( A N D T H E N U L L M O D E L )

Slide 117

Slide 117 text

B A S E L I N E A LWAY S G U E S S R E V E R S E N U L L M O D E L

Slide 118

Slide 118 text

M O D E L 1 A L L C R O W D S I M P L E M A J O R I TY

Slide 119

Slide 119 text

M O D E L 2 F O L LO W T H E L E A D E R W I T H N O T H R E S H O L D I N G

Slide 120

Slide 120 text

M O D E L 3 F O L LO W T H E L E A D E R W I T H E X P E R I E N C E T H R E S H O L D I N G ( X P = 5 )

Slide 121

Slide 121 text

M O D E L 4 M A X I M U M ACC U R ACY ( T H E R E A R E AC T UA L LY S E V E R A L M O D E L CO N F I G U R AT I O N S W H I C H O F F E R R O U G H LY E Q U I VA L E N T P E R F O R M A N C E ) E X P E R I E N C E T H R E S H O L D O F 5 C R O W D S I Z E I S CA P P E D AT 2 2 E X P O N E N T I A L W E I G H T W I T H A L P H A O F 0 . 1

Slide 122

Slide 122 text

CASE LEVEL CUMULATIVE ACCURACY

Slide 123

Slide 123 text

JUSTICE LEVEL CUMULATIVE ACCURACY

Slide 124

Slide 124 text

DISTRIBUTION OF JUSTICE LEVEL MODEL ACCURACY

Slide 125

Slide 125 text

No content

Slide 126

Slide 126 text

W E S I M U L AT E T H E P E R F O R M A N C E O F * E AC H * O F T H E 2 7 7 , 2 0 1 P OT E N T I A L C R O W D M O D E L S R O B U ST N E S S O F P E R F O R M A N C E

Slide 127

Slide 127 text

ROBUSTNESS VISUALIZED T H I S I S A L L R E L AT I V E TO T H E N U L L M O D E L ( O F A LWAY S G U E S S R E V E R S E )

Slide 128

Slide 128 text

ROBUSTNESS VISUALIZED T H E CO N TO U R P LOT F L AT T E N S T H E D I M E N S I O N A L I TY O F T H E S PAC E ( E AC H C E L L I S T H E AV E R AG E M O D E L P E R F O R M A N C E OV E R A L L OT H E R M O D E L PA R A M E T E R AT E AC H E X P E R I E N C E , R A N K CO M B O )

Slide 129

Slide 129 text

ROBUSTNESS VISUALIZED J U ST I C E L E V E L CA S E L E V E L

Slide 130

Slide 130 text

No content

Slide 131

Slide 131 text

CONCLUSION + FUTURE WORK

Slide 132

Slide 132 text

T H I S PA P E R O F F E R S CO N T R I B U T I O N S TO T H E G E N E R A L S C I E N T I F I C L I T E R AT U R E

Slide 133

Slide 133 text

I N OT H E R WO R D S , I T O F F E R A F R A M E WO R K F O R C R O W D S O U R C I N G G E N E R A L LY W I T H # S COT U S A S A N A P P L I E D E X A M P L E

Slide 134

Slide 134 text

T H E R E A R E A L S O M A N Y F O L LO W O N PA P E R S T H AT M I G H T B E G E N E R AT E D

Slide 135

Slide 135 text

I N C LU D I N G B L E N D I N G O U R A LG O W I T H T H E C R O W D I N A N E N S E M B L E ( M E TA ) M O D E L

Slide 136

Slide 136 text

crowd forecast learning problem is to discover how to blend streams of intelligence algorithm forecast ensemble method ENSEMBLE MODEL we can use machine learning methods and metadata such as case topic, lower court as well as crowd metadata to ‘learn’ the conditional weights to apply to the input signals

Slide 137

Slide 137 text

W H I C H A M O N G OT H E R T H I N G S L I N K S TO O U R I N T E R E ST # A B N O R M A L R E T U R N S A N D J U D I C I A L D E C I S I O N S https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2649726

Slide 138

Slide 138 text

AG A I N W E W I L L A N O N Y M I Z E A N D T H E N O P E N S O U R C E P L AY E R P R E D I C T I O N DATA TO S U P P O RT ACA D E M I C R E S E A R C H I N TO P R E D I C T I O N , C R O W D S O U R C I N G , E TC .

Slide 139

Slide 139 text

No content

Slide 140

Slide 140 text

DANIEL MARTIN KATZ E D U | I L L I N O I S T E C H + S TA N F O R D C O D E X B LO G | C O M P U TAT I O N A L L E GA L S T U D I E S . C O M PAG E | DA N I E L M A R T I N K AT Z . C O M C O R P | L E X P R E D I C T. C O M MICHAEL BOMMARITO E D U | I L L I N O I S T E C H + S TA N F O R D C O D E X B LO G | C O M P U TAT I O N A L L E GA L S T U D I E S . C O M PAG E | B O M M A R I TO L LC . C O M C O R P | L E X P R E D I C T. C O M JOSH BLACKMAN E D U | S O U T H T E X A S C O L L E G E O F L AW H O U S TO N B LO G | J O S H B L AC K M A N . C O M PAG E | J O S H B L AC K M A N . C O M / B LO G C O R P | L E X P R E D I C T. C O M

Slide 141

Slide 141 text

H T T P S : / / A R X I V. O RG / A B S / 1712 . 0 3 84 6 H T T P S : / / PA P E R S . S S R N . C O M / S O L 3 / PA P E R S . C F M ? A B S T R AC T _ I D = 3 0 8 5710

Slide 142

Slide 142 text

C R O W D S O U R C I N G ACC U R AT E LY A N D R O B U ST LY P R E D I C T S S U P R E M E CO U RT D E C I S I O N S DA N I E L M A RT I N KATZ | I L L I N O I S T E C H + STA N F O R D CO D E X M I C H A E L B O M M A R I TO | I L L I N O I S T E C H + STA N F O R D CO D E X J O S H B L AC K M A N | S O U T H T E X A S CO L L E G E O F L AW 0.4 0.5 0.6 0.7 0.8 0.9 2012 2013 2014 2015 2016 2017 Date of Decison Case Level Cumulative Accuracy By Model Type Model Type Model 1 Model 2 Model 3 Model 4 Null Model