Slide 1

Slide 1 text

Dr. Javier Gonzalez-Sanchez [email protected] www.javiergs.info o ffi ce: 14 -227 CSC 570 Current Topics in Computer Science Applied Affective Computing Lecture 09. Gestures and Posture

Slide 2

Slide 2 text

Facial Gestures

Slide 3

Slide 3 text

Face 3

Slide 4

Slide 4 text

MindReader SDK 4

Slide 5

Slide 5 text

Face 5 https://doi.org/10.1371/journal.pone.0251057

Slide 6

Slide 6 text

Facial Action Coding System (FACS) Bre a king down f a ci a l expressions into individu a l muscle movements, c a lled " a ction units" th a t c a n be combined to cre a te a wide r a nge of f a ci a l expressions. Facial Ac ti on Coding System, 46 ac ti ons (plus head movements). 6

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

40 Sniff

Slide 9

Slide 9 text

Information Given in FACS for Each Action Unit 9

Slide 10

Slide 10 text

F a ci a l Action Coding System (FACS) Che a t Sheet+ 10

Slide 11

Slide 11 text

Face 11 (Ekman and Friesen 1978) Facial Action Coding System, 46 actions (plus head movements). (update 2022) 19 Lip Corner Depressor 26 Jaw Drop 27 Mouth Stretch

Slide 12

Slide 12 text

12 AU15 Lip Corner Depressor AU17 Chin Raiser

Slide 13

Slide 13 text

13

Slide 14

Slide 14 text

14 AU10 Upper Lip Raiser AU10 Upper Lip Raiser AU15 Lip Corner Depressor

Slide 15

Slide 15 text

15

Slide 16

Slide 16 text

16 AU10 Upper Lip Raiser AU17 Chin Raiser AU15 Lip Corner Depressor AU17 Chin Raiser

Slide 17

Slide 17 text

AU17 17

Slide 18

Slide 18 text

AU15 AU10 AU10 AU17 AU10 AU15 AU17 AU17 AU10 AU15 AU15 AU17

Slide 19

Slide 19 text

Face 19 30 frames per second 10 inferences per second 600 values per minute 36,000 values per hour

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

Emotion Recognition 21 Ali Raza Shahid, Sheheryar Khan, Hong Yan. Contour and region harmonic features for sub-local facial expression recognition. Journal of Visual Communication and Image Representation. Volume 73. 2020. doi.org/10.1016/j.jvcir.2020.102949.

Slide 22

Slide 22 text

Emotions (Ekman) 22

Slide 23

Slide 23 text

MindReader SDK 23

Slide 24

Slide 24 text

MindReader SDK 24

Slide 25

Slide 25 text

MindReader SDK 25

Slide 26

Slide 26 text

MindReader SDK 26

Slide 27

Slide 27 text

MindReader SDK 27

Slide 28

Slide 28 text

Face 28 Timestamp Agreement Concentrating Disagreement Interested Thinking Unsure 101116112838516 0.001836032 0.999917 1.79E-04 0.16485406 0.57114255 0.04595062 101116112838578 0.001447654 0.9999516 1.29E-04 0.16310683 0.5958921 0.042706452 101116112838672 5.97E-04 0 1.5E-04 0.44996294 0.45527613 0.00789697 101116112838766 2.46E-04 0 1.75E-04 0.77445686 0.32144752 0.001418217 101116112838860 1.01E-04 0 2.04E-04 0.93511915 0.21167138 2.53E-04 101116112838953 4.18E-05 0 2.38E-04 0.983739 0.13208677 4.52E-05 101116112839016 1.72E-05 0 2.78E-04 0.9960774 0.07941038 8.07E-06 101116112839110 7.1E-06 0 3.24E-04 0.99906266 0.046613157 1.44E-06 101116112839156 2.92E-06 0 3.77E-04 0.99977654 0.026964737 2.57E-07 101116112839250 1.21E-06 0 4.4E-04 0.9999467 0.015464196 4.58E-08 101116112839391 4.97E-07 0 5.12E-04 0.9999873 0.008824189 8.18E-09 101116112839438 2.05E-07 0 5.97E-04 0.999997 0.005020725 1.46E-09 101116112839547 8.43E-08 0 6.96E-04 0.9999993 0.002851939 2.6E-10 101116112839578 3.47E-08 0 8.11E-04 0.9999999 0.001618473 4.64E-11 101116112839688 1.43E-08 0 9.45E-04 0.99999994 9.18E-04 8.29E-12 101116112839781 5.9E-09 0 0.001101404 1 5.21E-04 1.48E-12 101116112839828 2.43E-09 0 0.001283521 1 2.95E-04 2.64E-13

Slide 29

Slide 29 text

Body Postures

Slide 30

Slide 30 text

Embodiment • Inter a ction th a t involves the whole body a s a medium for eng a gement with digit a l environments. • Theoretic a l b a sis: physic a l sp a ce, a nd soci a l context in sh a ping hum a n inter a ctions • Immersive Computing, (VR/AR) - users feel fully present • A ff ective Computing - Physical actions c a n gener a te emotion a l st a tes; f a ci a l expressions can enh a nce soci a l a nd emotion a l eng a gement also • The Sensorimotor Loop: body’s movement provides feedback that shapes perception and decision-making. 30

Slide 31

Slide 31 text

Body Tracking (Estimation) • Met a Quest devices do not h a ve built-in full-body tr a cking, but Met a introduced AI- b a sed body tr a cking solutions. • Upper-Body Estim a tion: Using h a nd tr a cking + he a d movement, the system infers the position of shoulders, elbows, a nd torso. • Inverse Kinem a tics (IK): AI predicts the position of hidden body p a rts (like elbows) b a sed on h a nd a nd he a d movement p a tterns. • VR a pplic a tions use IK models to simul a te full-body motion with limited tr a cking points. 31

Slide 32

Slide 32 text

Body Tracking (Estimation) • No direct leg tr a cking (lower-body movements a re not n a tively c a ptured). • Uses AI inference to a pproxim a te w a lking a nd sitting poses. • Some VR a pps require extern a l tr a ckers (like Vive tr a ckers) or Kinect-like c a mer a s for full-body motion. • Extern a l a ccessories: w a ist a nd foot sensors for more precise tr a cking. 32

Slide 33

Slide 33 text

Your Java Desktop Application 33

Slide 34

Slide 34 text

MQTT Data { “leftEye”:{"x":-0.4216550588607788,"y":0.8787311911582947,"z":-0.00456150621175766}, “rightEye":{"x":-0.3755757808685303,"y":0.8756504058837891,"z":0.04438880831003189}, “leftEyeGaze":{"x":0.050619591027498248,"y":-0.0809454470872879,"z":0.9954323172569275}, “rightEyeGaze":{"x":0.050619591027498248,"y":-0.0809454470872879,"z":0.9954323172569275}, “eyeFixationPoint":{"x":0.11886614561080933,"y":-0.13097167015075684,"z":2.974684476852417}, “leftHand”:{"x":0.0,"y":0.0,"z":0.0}, "rightHand":{"x":0.0,"y":0.0,"z":0.0}, “cube":{"x":-0.5114021897315979,"y":1.5798050165176392,"z":0.024640535935759546}, “head":{"x":-0.7167978286743164,"y":0.8024232983589172,"z":0.17002606391906739}, “torso":{"x":-0.6404322385787964,"y":0.5270168781280518,"z":0.035430606454610828}, “leftFoot":{"x":-0.8061407804489136,"y":-0.16039752960205079,"z":0.25339341163635256}, “rightFoot":{"x":-0.5946151614189148,"y":-0.15849697589874268,"z":0.33175137639045718}, “hips":{"x":-0.6485552787780762,"y":0.33673161268234255,"z":0.0795457512140274}, “leftArmUp":{"x":-0.8079588413238525,"y":0.7046946287155151,"z":0.0354776531457901}, “lefArmLow":{"x":-0.6874216794967651,"y":0.5375530123710632,"z":-0.05098365247249603}, “rightArmUp":{"x":-0.5440698266029358,"y":0.7054383754730225,"z":0.16330549120903016}, “rightArmLow":{"x":-0.6227755546569824,"y":0.5135259032249451,"z":0.2464602291584015}, “leftWrist":{"x":-0.5440698266029358,"y":0.7054383754730225,"z":0.16330549120903016}, “rightWrist":{"x":-0.6227755546569824,"y":0.5135259032249451,"z":0.2464602291584015} } 34

Slide 35

Slide 35 text

Body Input Action on a Java Swing Application 35 •Look left Move the circle left • Look right Move the circle right • Look up Move the circle up • Look down Move the circle down • Raise left hand Change circle color to red (e.g., “select”) • Raise right hand Change circle color to blue (e.g., “highlight”) • Lean forward (bend down) Shrink the circle (closer interaction) • Stand up straight Expand the circle (broader interaction)

Slide 36

Slide 36 text

Questions 36

Slide 37

Slide 37 text

Homework 37 Let us play with Postures and Body Movements

Slide 38

Slide 38 text

CSC 570 Applied Affective Computing Javier Gonzalez-Sanchez, Ph.D. [email protected] Spring 2025 Copyright. These slides can only be used as study material for the class CSC 570 at Cal Poly. They cannot be distributed or used for another purpose.