Slide 31
Slide 31 text
Reference
1. Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy, "Deep IV: A flexible approach for
counterfactual prediction”, Proceedings of the 34th International Conference on Machine Learning, 2017.
2. Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and
James Robins, “Double/Debiased Machine Learning for Treatment and Structural Parameters”, Econometrics
Journal, 21, pp.C1–C68.
3. M. Oprescu, V. Syrgkanis and Z. S. Wu, "Orthogonal Random Forest for Causal Inference”, Proceedings of the
36th International Conference on Machine Learning (ICML), 2019.
4. Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu, "Meta-learners for estimating heterogeneous
treatment effects using machine learning”, arXiv preprint arXiv:1706.03461, 2017.
5. Piotr Rzepakowski and Szymon Jaroszewicz, "Decision trees for uplift modeling with single and multiple
treatments”, Knowl. Inf. Syst., 32(2):303–327, August 2012.
6. Horvitz, D. G., & Thompson, D. J., “A Generalization of Sampling Without Replacement from a Finite
Universe”, Journal of the American Statistical Association, 47(260), 663–685
7. Dudı́k Miroslav, Langford, J., & Li, L., “Doubly Robust Policy Evaluation and Learning”, In Proceedings of the 28th
International Conference on Machine Learning, Bellevue, 2011 (pp. 1097–1104)
8. Karampatziakis, N., & Langford, J.,”Online Importance Weight Aware Updates”, In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence (pp. 392–399)