Slide 1

Slide 1 text

1 KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Institut e of Applied Materials – Computional Materials Science (IAM-CMS) Britta Nestler and all group and cooperating partners Ihre Titelbilder Selected Highlights of Accelerated Microstructure Design Using the High Performance Materials Simulation Framework Pace3D

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

3 Micro Macro Simulation – digital twin Experiment – real twin Overview: Across the scales

Slide 4

Slide 4 text

4  the Pace3D - package contains modules for the solution of various applications:  Implementation in C, C++ for Linux, approx. 710.000 lines of code  simulations can be run sequentially or parallely using MPI and OpenMP on high performance computers  performance-optimization of the software is achieved by adaptive meshes, computing time and memory saving algorithms, dynamical domain decomposition and data compression  Framework for easy access of the pre- and postprocessing features  Hugh package of pre- and postprocessing methods  phase-field models for microstructure formations in multicomponent and multiphase materials  CFD solvers for modelling fluid flow processes based on the Navier-Stokes equations and on the Lattice-Boltzmann method  Solid Mechanics  Micromagnetism  Grand chemical potential, Grand elastic potential Pace3D – Parallel Algorithms for Crystal Evolution

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

6 Phase-field model for phase transitions in multiphase systems

Slide 7

Slide 7 text

7 A. Choudhury, B. Nestler. In: Physical Review E – Statistical, Nonlinear and Soft Matter Physics 85.2 (2012), DOI : 10.1103/PhysRevE.85.021602.

Slide 8

Slide 8 text

8

Slide 9

Slide 9 text

9

Slide 10

Slide 10 text

10

Slide 11

Slide 11 text

11 Evolution equations for multiphases/components : Inter-diffusivities of the independent components

Slide 12

Slide 12 text

12 Application to solidification

Slide 13

Slide 13 text

13 Research Field: High Performance Materials Simulation and Data Science Solidification Microstructures Dendrite network Dendrite Cells Eutectic colonies Ternary eutectic patterns Eutectic and dendritic growth

Slide 14

Slide 14 text

14

Slide 15

Slide 15 text

15

Slide 16

Slide 16 text

16

Slide 17

Slide 17 text

17

Slide 18

Slide 18 text

18

Slide 19

Slide 19 text

19

Slide 20

Slide 20 text

20

Slide 21

Slide 21 text

21

Slide 22

Slide 22 text

22

Slide 23

Slide 23 text

23

Slide 24

Slide 24 text

24

Slide 25

Slide 25 text

25

Slide 26

Slide 26 text

26 Microtomography and simulations of directional solidification microstructures in a ternary eutectic Al-Ag-Cu alloy • Massiv Parallel Microstructure Simulation on high computer systems • Pattern characterization, derivation of morphology diagrams • Cooperation with A. Dennstedt, L. Ratke, DLR Cologne • Cooperation with S. Kalidinid, Georgia Tech., USA

Slide 27

Slide 27 text

27

Slide 28

Slide 28 text

28

Slide 29

Slide 29 text

29

Slide 30

Slide 30 text

30

Slide 31

Slide 31 text

31

Slide 32

Slide 32 text

32

Slide 33

Slide 33 text

33

Slide 34

Slide 34 text

34

Slide 35

Slide 35 text

35 PFM of fluid flow, wetting, condenstation and evaporation Lotus effect1 1http://futureprospects.files.wordpress.com/2010/05/lotuseffekt.jpg

Slide 36

Slide 36 text

36 Motivation  Coating, printing, textile, lithography etc.  Medical diagnostic systems, Micro-Optofluidics, etc.  Dew and fog water collectors in arid and semi-arid regions  Liquid aerosols filtering

Slide 37

Slide 37 text

37 Research Field: Multiphysics Materials Modelling Microstructure-Fluid Dynamics Formation of porous structures and coating on surfaces Fluid flow through porous media Inkjet printing Wetting and reactive wetting Membrane design

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

39 Youngs contact angle (flat)  = 126,9° (measured 126,1°) Wenzel contact angle  = 137,05° (measured 135,2°) Cassie- Baxter contact angle  = 140,9° (measured 140,1°)

Slide 40

Slide 40 text

40

Slide 41

Slide 41 text

41

Slide 42

Slide 42 text

42

Slide 43

Slide 43 text

43

Slide 44

Slide 44 text

44

Slide 45

Slide 45 text

45

Slide 46

Slide 46 text

46

Slide 47

Slide 47 text

47 Water Oil Soapy Water Oil

Slide 48

Slide 48 text

48

Slide 49

Slide 49 text

49

Slide 50

Slide 50 text

50 Microstructure - mechanical property interactions Elasto-plastic phase-field modelling accounting for the mechanical jump condition

Slide 51

Slide 51 text

51 Research Field: Multiphysics Materials Modelling Microstructure-Mechanics

Slide 52

Slide 52 text

52 Research Field: Multiphysics Materials Modelling Microstructure-Mechanics sheet molding compound

Slide 53

Slide 53 text

53

Slide 54

Slide 54 text

54

Slide 55

Slide 55 text

55

Slide 56

Slide 56 text

56

Slide 57

Slide 57 text

57

Slide 58

Slide 58 text

58

Slide 59

Slide 59 text

59

Slide 60

Slide 60 text

60 Snapshot: Multiscale Simulation of Thermomechanical Load in Brake Discs

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

62 Elastic modulus matrix 206000 N/mm² Elastic modulus graphite 10000 N/mm² Different stress states at local points of the microstructure Homogenized material: 133000 N/mm² (nonlinear stress-strain) Mechanical simulation (with plasticity) Stress-strain curves Displacement field graphite matrix cast iron

Slide 63

Slide 63 text

63 local plastic deformation of the matrix material Tensile load 1 2 1: homogenized strain at occuring plasticity 2: local strain at marked areas Mechanical simulation (with plasticity)

Slide 64

Slide 64 text

64 Phase-field modelling of crack propagation in multiphase / multigrain systems

Slide 65

Slide 65 text

65

Slide 66

Slide 66 text

66

Slide 67

Slide 67 text

67

Slide 68

Slide 68 text

68

Slide 69

Slide 69 text

69

Slide 70

Slide 70 text

70

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

74 Workflow to do simulations

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

No content

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

79 Summary  PFM and high performance computions of pattern formation in ternary eutectics  Application of PFM for wetting phenomena  Elasto-plastic PFM for solid-solid transformations - mechanical jump conditions are satisfied - configurational force balance is recovered - no interfacial excess energy  PFM for crack propagation in multiple phase / grain systems - Griffith criterion is satisfied - phase-dependent crack resistance - simultaneous modelling of crack propagation and solid state phase transformations  New Data Plattform for Material Science

Slide 80

Slide 80 text

80 Outlook • Multiphysics Modelling • Multiscale Modelling • Digital Twins • Transfer of Methods and Software to Industry • Material Data Management and Data Science Methods for Materials Engineering Acknowledgements • Helmholtz Association • German Research Foundation (DFG) • BMBF • EFRE Europäische Fonds für regionale Entwicklung • Minsterium für Wissenschaft und Kunst Baden-Württemberg • Landesstiftung Baden-Württemberg