Slide 1

Slide 1 text

Ali Akbar Septiandri Yosef Ardhito Winatmoko Pesimis Positif

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

● ● ●

Slide 5

Slide 5 text

Task A Task B # Positive Train 191 (71%) 168 (55%) # Negative Train 77 (29%) 137 (45%) Avg. # Char 87.23 97.33 # Dev 215 244 # Test 855 974

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

Labelled as 1 (correct) but does not fit the criteria – Task A

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

Original Label Corrected Label Frequency Task A 0 1 10 1 0 4 Task B 0 1 46 1 0 13

Slide 11

Slide 11 text

PREPROCESSING FEATURE EXTRACTION CLASSIFICATION

Slide 12

Slide 12 text

● Tokenizer + lemmatizer ● Unigram / TF-IDF ○ ● Latent Semantic Analysis (LSA) ○ ○ ● ML algorithms ○ ○ ○ ● Evaluation metric ○

Slide 13

Slide 13 text

SEPARATE MODELS

Slide 14

Slide 14 text

● Typo corrector ● hyperopt ● Machine learning ○ ○ ○ ○ ● ensemble models

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

(0.879±0.014) (0.764±0.035)

Slide 17

Slide 17 text

Train A Train B Dev Test Best 0.879 0.764 0.810 0.812 Ensemble+Original 0.885 0.764 0.799 0.801 Ensemble+Updated 0.898 0.831 0.810 0.803

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

◂ ◂ ◂ ◂ ◂ ◂