×
Copy
Open
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
Ali Akbar Septiandri Yosef Ardhito Winatmoko Pesimis Positif
Slide 2
Slide 2 text
No content
Slide 3
Slide 3 text
No content
Slide 4
Slide 4 text
● ● ●
Slide 5
Slide 5 text
Task A Task B # Positive Train 191 (71%) 168 (55%) # Negative Train 77 (29%) 137 (45%) Avg. # Char 87.23 97.33 # Dev 215 244 # Test 855 974
Slide 6
Slide 6 text
No content
Slide 7
Slide 7 text
Labelled as 1 (correct) but does not fit the criteria – Task A
Slide 8
Slide 8 text
No content
Slide 9
Slide 9 text
No content
Slide 10
Slide 10 text
Original Label Corrected Label Frequency Task A 0 1 10 1 0 4 Task B 0 1 46 1 0 13
Slide 11
Slide 11 text
PREPROCESSING FEATURE EXTRACTION CLASSIFICATION
Slide 12
Slide 12 text
● Tokenizer + lemmatizer ● Unigram / TF-IDF ○ ● Latent Semantic Analysis (LSA) ○ ○ ● ML algorithms ○ ○ ○ ● Evaluation metric ○
Slide 13
Slide 13 text
SEPARATE MODELS
Slide 14
Slide 14 text
● Typo corrector ● hyperopt ● Machine learning ○ ○ ○ ○ ● ensemble models
Slide 15
Slide 15 text
No content
Slide 16
Slide 16 text
(0.879±0.014) (0.764±0.035)
Slide 17
Slide 17 text
Train A Train B Dev Test Best 0.879 0.764 0.810 0.812 Ensemble+Original 0.885 0.764 0.799 0.801 Ensemble+Updated 0.898 0.831 0.810 0.803
Slide 18
Slide 18 text
No content
Slide 19
Slide 19 text
No content
Slide 20
Slide 20 text
No content
Slide 21
Slide 21 text
No content
Slide 22
Slide 22 text
No content
Slide 23
Slide 23 text
◂ ◂ ◂ ◂ ◂ ◂