Slide 1

Slide 1 text

The Silent Majority: Weak AGNs Rodrigo Nemmen Universidade de São Paulo (USP) w/ K. Wong, I. Almeida, A. Vemado, G. Soares, A. Tchekhovskoy, R. Riffel Opportunities and Challenges

Slide 2

Slide 2 text

An all-sky study of the brightest and most powerful hard X-ray detected AGN

Slide 3

Slide 3 text

An all-sky study of the brightest and most powerful hard X-ray detected AGN

Slide 4

Slide 4 text

Low-luminosity AGNs = Cosmic silent majority An all-sky study of the brightest and most powerful hard X-ray detected AGN

Slide 5

Slide 5 text

Black hole accretion (AGN) ➾ Complex phenomenology m VLT reveals a of the elliptical lication is that ed in scattered ases, spectropo- rast of the scat- and narrow line um in polarized et al., 1999). s are static over Sy1). However, only been pos- is short relative to 108 yr). Thus over their life- over the short GN are known escales of years NGC4151 and n Sy1 and Sy2 nd Perez, 1984; clei have been milar timescale 96). By analogy e must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering orientation based on Tadhunter+08 Nuclear lum inosity Radio power Broad / Narrow lines

Slide 6

Slide 6 text

Black hole accretion (AGN) ➾ Complex phenomenology m VLT reveals a of the elliptical lication is that ed in scattered ases, spectropo- rast of the scat- and narrow line um in polarized et al., 1999). s are static over Sy1). However, only been pos- is short relative to 108 yr). Thus over their life- over the short GN are known escales of years NGC4151 and n Sy1 and Sy2 nd Perez, 1984; clei have been milar timescale 96). By analogy e must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering orientation based on Tadhunter+08 spin a magnetic flux Φbh ? orientation TOR = f( ˙ M) ˙ M / ˙ M E dd Nuclear lum inosity Radio power Broad / Narrow lines

Slide 7

Slide 7 text

Black hole accretion (AGN) ➾ Complex phenomenology m VLT reveals a of the elliptical lication is that ed in scattered ases, spectropo- rast of the scat- and narrow line um in polarized et al., 1999). s are static over Sy1). However, only been pos- is short relative to 108 yr). Thus over their life- over the short GN are known escales of years NGC4151 and n Sy1 and Sy2 nd Perez, 1984; clei have been milar timescale 96). By analogy e must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering orientation based on Tadhunter+08 spin a magnetic flux Φbh ? orientation TOR = f( ˙ M) ˙ M / ˙ M E dd Nuclear lum inosity Radio power Broad / Narrow lines Low- luminosity AGNs

Slide 8

Slide 8 text

Refresher: What is a low-luminosity AGN? (LLAGN) hLbol i ⇠ 1040 1041 erg s 1 Difficult to study! Very sub-Eddington Line emission spectrum: LINERs Tend to be radio-loud Weak or no Fe Kα line Terashima & Wilson 2003; Ho 2008, 2009; Eracleous+2010; Nemmen+2014 <5% of BASS (Koss+2017) R. Nemmen In X-rays: LX . 1041 erg s 1 AAACHHicbZDLSsNAFIYnXmu9VV26GSyCgpZECuqu6MaFiwrGFpq0TKan7dCZJMxMCiXkGXwEn8KtrlyJW8GF7+L0stDWHwY+zn8OZ84fxJwpbdtf1sLi0vLKam4tv76xubVd2Nl9UFEiKbg04pGsB0QBZyG4mmkO9VgCEQGHWtC/Hvm1AUjFovBeD2PwBemGrMMo0abUKhzfturY46CUYgI7djMtOxn2cOpJgUF2DaqsmZ46WatQtEv2WHgenCkU0VTVVuHba0c0ERBqyolSDceOtZ8SqRnlkOW9REFMaJ90oWEwJALUSXvAYjVGPx1fl+FDY7ZxJ5LmhRqPq7+HUyKUGorAdAqie2rWGxX/8xqJ7lz4KQvjRENIJ4s6Ccc6wqOocJtJoJoPDRAqmfk2pj0iCdUm0LzJw5m9fh7cs9JlybkrFytX02ByaB8doCPkoHNUQTeoilxE0SN6Ri/o1Xqy3qx362PSumBNZ/bQH1mfP/5yoGw= AAACHHicbZDLSsNAFIYnXmu9VV26GSyCgpZECuqu6MaFiwrGFpq0TKan7dCZJMxMCiXkGXwEn8KtrlyJW8GF7+L0stDWHwY+zn8OZ84fxJwpbdtf1sLi0vLKam4tv76xubVd2Nl9UFEiKbg04pGsB0QBZyG4mmkO9VgCEQGHWtC/Hvm1AUjFovBeD2PwBemGrMMo0abUKhzfturY46CUYgI7djMtOxn2cOpJgUF2DaqsmZ46WatQtEv2WHgenCkU0VTVVuHba0c0ERBqyolSDceOtZ8SqRnlkOW9REFMaJ90oWEwJALUSXvAYjVGPx1fl+FDY7ZxJ5LmhRqPq7+HUyKUGorAdAqie2rWGxX/8xqJ7lz4KQvjRENIJ4s6Ccc6wqOocJtJoJoPDRAqmfk2pj0iCdUm0LzJw5m9fh7cs9JlybkrFytX02ByaB8doCPkoHNUQTeoilxE0SN6Ri/o1Xqy3qx362PSumBNZ/bQH1mfP/5yoGw= AAACHHicbZDLSsNAFIYnXmu9VV26GSyCgpZECuqu6MaFiwrGFpq0TKan7dCZJMxMCiXkGXwEn8KtrlyJW8GF7+L0stDWHwY+zn8OZ84fxJwpbdtf1sLi0vLKam4tv76xubVd2Nl9UFEiKbg04pGsB0QBZyG4mmkO9VgCEQGHWtC/Hvm1AUjFovBeD2PwBemGrMMo0abUKhzfturY46CUYgI7djMtOxn2cOpJgUF2DaqsmZ46WatQtEv2WHgenCkU0VTVVuHba0c0ERBqyolSDceOtZ8SqRnlkOW9REFMaJ90oWEwJALUSXvAYjVGPx1fl+FDY7ZxJ5LmhRqPq7+HUyKUGorAdAqie2rWGxX/8xqJ7lz4KQvjRENIJ4s6Ccc6wqOocJtJoJoPDRAqmfk2pj0iCdUm0LzJw5m9fh7cs9JlybkrFytX02ByaB8doCPkoHNUQTeoilxE0SN6Ri/o1Xqy3qx362PSumBNZ/bQH1mfP/5yoGw= AAACHHicbZDLSsNAFIYnXmu9VV26GSyCgpZECuqu6MaFiwrGFpq0TKan7dCZJMxMCiXkGXwEn8KtrlyJW8GF7+L0stDWHwY+zn8OZ84fxJwpbdtf1sLi0vLKam4tv76xubVd2Nl9UFEiKbg04pGsB0QBZyG4mmkO9VgCEQGHWtC/Hvm1AUjFovBeD2PwBemGrMMo0abUKhzfturY46CUYgI7djMtOxn2cOpJgUF2DaqsmZ46WatQtEv2WHgenCkU0VTVVuHba0c0ERBqyolSDceOtZ8SqRnlkOW9REFMaJ90oWEwJALUSXvAYjVGPx1fl+FDY7ZxJ5LmhRqPq7+HUyKUGorAdAqie2rWGxX/8xqJ7lz4KQvjRENIJ4s6Ccc6wqOocJtJoJoPDRAqmfk2pj0iCdUm0LzJw5m9fh7cs9JlybkrFytX02ByaB8doCPkoHNUQTeoilxE0SN6Ri/o1Xqy3qx362PSumBNZ/bQH1mfP/5yoGw= Lbol/LEdd . 10 3 AAACG3icbZDNSsNAFIUn9a/Wv6hLN4NF6EJrooK6K4rgwkUFYwtNLZPJtB06k4SZSaGEvIKP4FO41ZUrcevChe/iNM1CWw8MfNxzL3fu8SJGpbKsL6MwN7+wuFRcLq2srq1vmJtb9zKMBSYODlkomh6ShNGAOIoqRpqRIIh7jDS8weXYbwyJkDQM7tQoIm2OegHtUoyULnXMyk0ncQWHXsjSw5yvfD+FLiNSSsqhbT0kB8dpxyxbVSsTnAU7hzLIVe+Y364f4piTQGGGpGzZVqTaCRKKYkbSkhtLEiE8QD3S0hggTuS+P6SRzLCdZMelcE+bPuyGQr9Awaz6ezhBXMoR93QnR6ovp71x8T+vFavuWTuhQRQrEuDJom7MoArhOCnoU0GwYiMNCAuqvw1xHwmElc6zpPOwp6+fBeeoel61b0/KtYs8mCLYAbugAmxwCmrgGtSBAzB4BM/gBbwaT8ab8W58TFoLRj6zDf7I+PwBpfag3w== AAACG3icbZDNSsNAFIUn9a/Wv6hLN4NF6EJrooK6K4rgwkUFYwtNLZPJtB06k4SZSaGEvIKP4FO41ZUrcevChe/iNM1CWw8MfNxzL3fu8SJGpbKsL6MwN7+wuFRcLq2srq1vmJtb9zKMBSYODlkomh6ShNGAOIoqRpqRIIh7jDS8weXYbwyJkDQM7tQoIm2OegHtUoyULnXMyk0ncQWHXsjSw5yvfD+FLiNSSsqhbT0kB8dpxyxbVSsTnAU7hzLIVe+Y364f4piTQGGGpGzZVqTaCRKKYkbSkhtLEiE8QD3S0hggTuS+P6SRzLCdZMelcE+bPuyGQr9Awaz6ezhBXMoR93QnR6ovp71x8T+vFavuWTuhQRQrEuDJom7MoArhOCnoU0GwYiMNCAuqvw1xHwmElc6zpPOwp6+fBeeoel61b0/KtYs8mCLYAbugAmxwCmrgGtSBAzB4BM/gBbwaT8ab8W58TFoLRj6zDf7I+PwBpfag3w== AAACG3icbZDNSsNAFIUn9a/Wv6hLN4NF6EJrooK6K4rgwkUFYwtNLZPJtB06k4SZSaGEvIKP4FO41ZUrcevChe/iNM1CWw8MfNxzL3fu8SJGpbKsL6MwN7+wuFRcLq2srq1vmJtb9zKMBSYODlkomh6ShNGAOIoqRpqRIIh7jDS8weXYbwyJkDQM7tQoIm2OegHtUoyULnXMyk0ncQWHXsjSw5yvfD+FLiNSSsqhbT0kB8dpxyxbVSsTnAU7hzLIVe+Y364f4piTQGGGpGzZVqTaCRKKYkbSkhtLEiE8QD3S0hggTuS+P6SRzLCdZMelcE+bPuyGQr9Awaz6ezhBXMoR93QnR6ovp71x8T+vFavuWTuhQRQrEuDJom7MoArhOCnoU0GwYiMNCAuqvw1xHwmElc6zpPOwp6+fBeeoel61b0/KtYs8mCLYAbugAmxwCmrgGtSBAzB4BM/gBbwaT8ab8W58TFoLRj6zDf7I+PwBpfag3w== AAACG3icbZDNSsNAFIUn9a/Wv6hLN4NF6EJrooK6K4rgwkUFYwtNLZPJtB06k4SZSaGEvIKP4FO41ZUrcevChe/iNM1CWw8MfNxzL3fu8SJGpbKsL6MwN7+wuFRcLq2srq1vmJtb9zKMBSYODlkomh6ShNGAOIoqRpqRIIh7jDS8weXYbwyJkDQM7tQoIm2OegHtUoyULnXMyk0ncQWHXsjSw5yvfD+FLiNSSsqhbT0kB8dpxyxbVSsTnAU7hzLIVe+Y364f4piTQGGGpGzZVqTaCRKKYkbSkhtLEiE8QD3S0hggTuS+P6SRzLCdZMelcE+bPuyGQr9Awaz6ezhBXMoR93QnR6ovp71x8T+vFavuWTuhQRQrEuDJom7MoArhOCnoU0GwYiMNCAuqvw1xHwmElc6zpPOwp6+fBeeoel61b0/KtYs8mCLYAbugAmxwCmrgGtSBAzB4BM/gBbwaT8ab8W58TFoLRj6zDf7I+PwBpfag3w==

Slide 9

Slide 9 text

Schematic LLAGN SED ̻LLAGN SED̼ Ho+1999; Eracleous+2010; Fernandez-Ontiveros+ 2012; Mason+2012; Nemmen+2014 Lack of quasar UV prominence (“big blue bump”) Elvis+1994; Shang+2011

Slide 10

Slide 10 text

Schematic LLAGN SED Ho+1999; Eracleous+2010; Fernandez-Ontiveros+ 2012; Mason+2012; Nemmen+2014 thin accretion disk Lack of quasar UV prominence (“big blue bump”)

Slide 11

Slide 11 text

? Schematic LLAGN SED Ho+1999; Eracleous+2010; Fernandez-Ontiveros+ 2012; Mason+2012; Nemmen+2014 thin accretion disk Lack of quasar UV prominence (“big blue bump”)

Slide 12

Slide 12 text

Low accretion rates in LLAGNs: RIAFs thin disk RIAF jet

Slide 13

Slide 13 text

Low accretion rates in LLAGNs: RIAFs thin disk RIAF jet RIAF jet

Slide 14

Slide 14 text

Low accretion rates in LLAGNs: RIAFs thin disk RIAF jet ˙ M . 0.01M yr 1 AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY Radiatively inefficient mode

Slide 15

Slide 15 text

Low accretion rates in LLAGNs: RIAFs thin disk RIAF jet ˙ M . 0.01M yr 1 AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY Radiatively inefficient mode

Slide 16

Slide 16 text

Low accretion rates in LLAGNs: RIAFs thin disk RIAF jet ˙ M . 0.01M yr 1 AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY AAACIHicbZBPS8MwGMbT+W/Of1WPXoJD8OBGK4J6G3rxMphg3WCtJc2yLSxpS5IORumn8CP4KbzqyZN4VPC7mHU96OYLgR/P875J3ieIGZXKsj6N0tLyyupaeb2ysbm1vWPu7t3LKBGYODhikegESBJGQ+IoqhjpxIIgHjDSDkbXU789JkLSKLxTk5h4HA1C2qcYKS35Zs3tRSptZtBlREpJObTqlg2bvhtpA7owdQWHE5E9pDU7882qtvOCi2AXUAVFtXzzW9+PE05ChRmSsmtbsfJSJBTFjGQVN5EkRniEBqSrMUScyJPemMYyRy/NN8zgkTZ7sB8JfUIFc/X3cIq4lBMe6E6O1FDOe1PxP6+bqP6Fl9IwThQJ8eyhfsKgiuA0LtijgmDFJhoQFlR/G+IhEggrHWpF52HPb78Izmn9sm7fnlUbV0UwZXAADsExsME5aIAb0AIOwOARPIMX8Go8GW/Gu/Exay0Zxcw++FPG1w8B96KY Open question: Nature of state transitions? Jet-disk connection Radiatively inefficient mode

Slide 17

Slide 17 text

Importance of low-luminosity AGNs SMBHs spend most of their time in LLAGN state

Slide 18

Slide 18 text

Importance of low-luminosity AGNs Found in ≈half of nearby galaxies → Dominate SMBH accretion at z=0 The nearest SMBH is a LLAGN: Sgr A* Primary target for Event Horizon Telescope SMBHs spend most of their time in LLAGN state LLAGN? quasar/ULIRG LLAGN z>1 z≈1 z<1 LLAGN/Seyfert Hopkins+2006

Slide 19

Slide 19 text

n thin disks, most of the mass e radii reaches the central black , in thick disks, very little of the nds up accreting into the hole. the mass circulates in convective or is driven away in an unbound 6). This in turn causes the tion from the accretion flow to ally. Because the fate of sup- pends so strongly on the mode hin versus thick), it is likely reting black holes occupy a velope Main disk body KDP 30 20 10 10 20 0 –10 1 SNE, GRB Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN 2 2 3 log R (RS ) log R (km) log M (MEdd ) log M (g s–1) Regimes of BH accretion Super-Eddington, radiation-trapped TDE, AGN? Near-Eddington Sub-Eddington retion flow to e fate of sup- on the mode ), it is likely es occupy a disk body KDP 30 20 10 0 SNE, GRB Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN log M (MEdd ) log M (g s–1) dy DP 20 10 0 –10 1 Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN 2 log R (RS ) log M (MEdd ) log M (g s–1) black of the e hole. vective bound es the low to f sup- mode likely upy a DP 30 10 20 SNE, GRB Radiation–trapped 2 3 log R (km) log M (MEdd ) log M (g s–1) Narayan & Quataert 2005 Faint XRBs, low- luminosity AGNs Bright XRB, quasars, Seyferts log R (pc) -4 -5 ? ?

Slide 20

Slide 20 text

n thin disks, most of the mass e radii reaches the central black , in thick disks, very little of the nds up accreting into the hole. the mass circulates in convective or is driven away in an unbound 6). This in turn causes the tion from the accretion flow to ally. Because the fate of sup- pends so strongly on the mode hin versus thick), it is likely reting black holes occupy a velope Main disk body KDP 30 20 10 10 20 0 –10 1 SNE, GRB Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN 2 2 3 log R (RS ) log R (km) log M (MEdd ) log M (g s–1) Regimes of BH accretion Super-Eddington, radiation-trapped TDE, AGN? Near-Eddington Sub-Eddington retion flow to e fate of sup- on the mode ), it is likely es occupy a disk body KDP 30 20 10 0 SNE, GRB Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN log M (MEdd ) log M (g s–1) dy DP 20 10 0 –10 1 Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN 2 log R (RS ) log M (MEdd ) log M (g s–1) black of the e hole. vective bound es the low to f sup- mode likely upy a DP 30 10 20 SNE, GRB Radiation–trapped 2 3 log R (km) log M (MEdd ) log M (g s–1) Narayan & Quataert 2005 Faint XRBs, low- luminosity AGNs Bright XRB, quasars, Seyferts log R (pc) -4 -5 ? ?

Slide 21

Slide 21 text

What is the structure and evolution of the circumnuclear material around SMBHs? What new insights can we gain from high S/N hard X-ray spectroscopy of local AGN? What are the properties of outflows in AGN? What influence do AGN have on their host galaxies? What can we learn from future missions? R. Nemmen

Slide 22

Slide 22 text

What is the structure and evolution of the circumnuclear material around SMBHs? What new insights can we gain from high S/N hard X-ray spectroscopy of local AGN? What are the properties of outflows in AGN? What influence do AGN have on their host galaxies? What can we learn from future missions? R. Nemmen

Slide 23

Slide 23 text

What can we learn from hard X-ray observations of LLAGNs?

Slide 24

Slide 24 text

Hard X-rays can teach us about physics of central engine RIAF Thin disk Model parameters synchrotron inverse Compton inverse Compton electron Lorentz factor seed photons energy density LIC / 2Uph AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw=

Slide 25

Slide 25 text

Hard X-rays can teach us about physics of central engine RIAF Thin disk Model parameters synchrotron inverse Compton inverse Compton electron Lorentz factor seed photons energy density LIC / 2Uph AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw=

Slide 26

Slide 26 text

Hard X-rays can teach us about physics of central engine RIAF Thin disk Model parameters Insights on accretion: Te, accr. rate synchrotron inverse Compton inverse Compton electron Lorentz factor seed photons energy density LIC / 2Uph AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw=

Slide 27

Slide 27 text

Hard X-rays can teach us about physics of central engine RIAF Thin disk Model parameters Insights on accretion: Te, accr. rate synchrotron inverse Compton inverse Compton electron Lorentz factor seed photons energy density LIC / 2Uph AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= AAACPHicbVBNTxsxFPQCLSH9IC1HLhZRpR6qaDdCor2hcmkkDqnULUjZNPJ6XxIr9q5lv0VEq/1N/AR+BQcOwKmnqlfOOJscQsJIlkYzb+znibUUFn3/1tvY3Hr1eru2U3/z9t373caHj79tlhsOIc9kZs5jZkGKFEIUKOFcG2AqlnAWT05m/tkFGCuy9BdONfQVG6ViKDhDJw0andNBERlFOycljbTJNGY0QrjE6uoiljmURTRiSrE/7XLZMpCURThP63FZDhpNv+VXoOskWJAmWaA7aNxFScZzBSlyyaztBb7GfsEMCi6hrEe5Bc34hI2g52jKFNgvyYXQtqL9otqjpJ+cmdBhZtxJkVbqcrhgytqpit2kYji2q95MfMnr5Tj82i9EqnOElM8fGuaSuopmVdJEGOAop44wboRbm/IxM4yjK7zu+ghWf79OwnbrWyv4edg8/r4opkb2yQH5TAJyRI7JD9IlIeHkityQe/LgXXt/vX/e//nohrfI7JFn8B6fAGeJsPw= Open question: What dominates— RIAF or jet—in LLAGNs and why?

Slide 28

Slide 28 text

Opt. thin synchrotron Synchrotron self-absorption Jet Hard X-rays can teach us about physics of central engine dp" = Pdx" As a consequence, P is a scalar invariant. We therefor relativistic generalisation of equation (2.3)for which choice is 2e2 dp" dp,. P=--<--> dr dr where r denotes the proper time. Rewriting this eq (3 = v/ c, we obtain For synchrotron radiation, the particle energy is c Equation(2.6)can be re-written in the convenient for 2 2 (B2) P = 2aTCf (31. 871" Synchrotron power:

Slide 29

Slide 29 text

Opt. thin synchrotron Synchrotron self-absorption Jet Hard X-rays can teach us about physics of central engine Insights on jet: e- distribution, magnetic field dp" = Pdx" As a consequence, P is a scalar invariant. We therefor relativistic generalisation of equation (2.3)for which choice is 2e2 dp" dp,. P=--<--> dr dr where r denotes the proper time. Rewriting this eq (3 = v/ c, we obtain For synchrotron radiation, the particle energy is c Equation(2.6)can be re-written in the convenient for 2 2 (B2) P = 2aTCf (31. 871" Synchrotron power:

Slide 30

Slide 30 text

Nustar detection of M87: Unresolved core. Jet origin favored Wong et al. 1 arcmin 20-40 keV NuSTAR 20-40keV 5 arcsec Chandra 3-7 keV 0.3-6 keV Chandra 10-40keV 40 keV (middle) NuSTAR images of M87. The circle at the center of the image indicates the rcle in the lower left is the background spectral extraction region with the same radius of 30′′. n in the right panel. The four white crosses from the left to the right are the locations of the espectively. The three black solid circles indicate the 3σ position errors of the emission peaks ands. The white circle indicates the Chandra position determined using a smoothed image in NS 2017 February 15, 22 ks, respectively and 90202052004). EASoft v6.21 and rocessed the data STAR Data Anal- with the standard pshots were taken ns on 2017 Febru- 6 for 5, 5, 13, and 10 keV is consistent with the origin of the softer emission (i.e., core/knots/jet emission contaminated by ICM). Deeper NuSTAR observation can potentially distinguish any structure to better than a few arcsec. The location of the NuSTAR soft peak can be com- pared with that measured with Chandra. We have smoothed a Chandra 3–7 keV image with a 2D Gaus- sian to simulate the FWHM of the NuSTAR PSF (18′′). The confidence region of the smoothed Chandra image is located near knot D. It is only slightly offset by about 1′′ from the NuSTAR soft peak, which is much smaller than ′′ Wong, Nemmen+2017 Γ = 2.11 Lx = 1.5×1040 erg/s NH = 2×1020 cm-2

Slide 31

Slide 31 text

Nustar detection of M87: Unresolved core. Jet origin favored Wong et al. 1 arcmin 20-40 keV NuSTAR 20-40keV 5 arcsec Chandra 3-7 keV 0.3-6 keV Chandra 10-40keV 40 keV (middle) NuSTAR images of M87. The circle at the center of the image indicates the rcle in the lower left is the background spectral extraction region with the same radius of 30′′. n in the right panel. The four white crosses from the left to the right are the locations of the espectively. The three black solid circles indicate the 3σ position errors of the emission peaks ands. The white circle indicates the Chandra position determined using a smoothed image in NS 2017 February 15, 22 ks, respectively and 90202052004). EASoft v6.21 and rocessed the data STAR Data Anal- with the standard pshots were taken ns on 2017 Febru- 6 for 5, 5, 13, and 10 keV is consistent with the origin of the softer emission (i.e., core/knots/jet emission contaminated by ICM). Deeper NuSTAR observation can potentially distinguish any structure to better than a few arcsec. The location of the NuSTAR soft peak can be com- pared with that measured with Chandra. We have smoothed a Chandra 3–7 keV image with a 2D Gaus- sian to simulate the FWHM of the NuSTAR PSF (18′′). The confidence region of the smoothed Chandra image is located near knot D. It is only slightly offset by about 1′′ from the NuSTAR soft peak, which is much smaller than ′′ Wong, Nemmen+2017 Γ = 2.11 Lx = 1.5×1040 erg/s NH = 2×1020 cm-2

Slide 32

Slide 32 text

Nustar detection of M87: Unresolved core. Jet origin favored Wong et al. 1 arcmin 20-40 keV NuSTAR 20-40keV 5 arcsec Chandra 3-7 keV 0.3-6 keV Chandra 10-40keV 40 keV (middle) NuSTAR images of M87. The circle at the center of the image indicates the rcle in the lower left is the background spectral extraction region with the same radius of 30′′. n in the right panel. The four white crosses from the left to the right are the locations of the espectively. The three black solid circles indicate the 3σ position errors of the emission peaks ands. The white circle indicates the Chandra position determined using a smoothed image in NS 2017 February 15, 22 ks, respectively and 90202052004). EASoft v6.21 and rocessed the data STAR Data Anal- with the standard pshots were taken ns on 2017 Febru- 6 for 5, 5, 13, and 10 keV is consistent with the origin of the softer emission (i.e., core/knots/jet emission contaminated by ICM). Deeper NuSTAR observation can potentially distinguish any structure to better than a few arcsec. The location of the NuSTAR soft peak can be com- pared with that measured with Chandra. We have smoothed a Chandra 3–7 keV image with a 2D Gaus- sian to simulate the FWHM of the NuSTAR PSF (18′′). The confidence region of the smoothed Chandra image is located near knot D. It is only slightly offset by about 1′′ from the NuSTAR soft peak, which is much smaller than ′′ Wong, Nemmen+2017 Hard X-rays lower than synchrotron self-Compton models Γ = 2.11 Lx = 1.5×1040 erg/s NH = 2×1020 cm-2 SSC jet model

Slide 33

Slide 33 text

Nustar detection of M87: Unresolved core. Jet origin favored Wong et al. 1 arcmin 20-40 keV NuSTAR 20-40keV 5 arcsec Chandra 3-7 keV 0.3-6 keV Chandra 10-40keV 40 keV (middle) NuSTAR images of M87. The circle at the center of the image indicates the rcle in the lower left is the background spectral extraction region with the same radius of 30′′. n in the right panel. The four white crosses from the left to the right are the locations of the espectively. The three black solid circles indicate the 3σ position errors of the emission peaks ands. The white circle indicates the Chandra position determined using a smoothed image in NS 2017 February 15, 22 ks, respectively and 90202052004). EASoft v6.21 and rocessed the data STAR Data Anal- with the standard pshots were taken ns on 2017 Febru- 6 for 5, 5, 13, and 10 keV is consistent with the origin of the softer emission (i.e., core/knots/jet emission contaminated by ICM). Deeper NuSTAR observation can potentially distinguish any structure to better than a few arcsec. The location of the NuSTAR soft peak can be com- pared with that measured with Chandra. We have smoothed a Chandra 3–7 keV image with a 2D Gaus- sian to simulate the FWHM of the NuSTAR PSF (18′′). The confidence region of the smoothed Chandra image is located near knot D. It is only slightly offset by about 1′′ from the NuSTAR soft peak, which is much smaller than ′′ Wong, Nemmen+2017 Hard X-rays lower than synchrotron self-Compton models Γ = 2.11 Lx = 1.5×1040 erg/s NH = 2×1020 cm-2 SSC jet model Issue: >10keV properties of LLAGNs as a pop. is essentially unconstrained

Slide 34

Slide 34 text

Outflows and feedback in LLAGNs TL;DR it’s messy

Slide 35

Slide 35 text

McNamara+05 Nature 1’ = 210 kpc Galaxy cluster X-rays radio jet What we know about outflows and feedback in LLAGNs

Slide 36

Slide 36 text

McNamara+05 Nature 1’ = 210 kpc Galaxy cluster X-rays radio jet What we know about outflows and feedback in LLAGNs ✅

Slide 37

Slide 37 text

McNamara+05 Nature 1’ = 210 kpc Galaxy cluster X-rays radio jet What we know about outflows and feedback in LLAGNs Normal galaxies? ✅

Slide 38

Slide 38 text

Radio: compact (pc-scale) emission (jets? winds?) Molecular outflows (v~100 km/s, ~100 pc) Near-IR IFU (e.g. MANGA): <1 kpc outflow Gamma-rays: ~10 kpc outflows in Sgr A* (Fermi bubbles) Are there outflows in run-of-the-mill LLAGNs? Leon+2007; Alatalo+2011; Combes+2013 Nagar+2002, 2005 Su+2010; Malyshev+2017 Cheung+2016; Wylezalek+2017

Slide 39

Slide 39 text

“Fermi bubbles” Radio: compact (pc-scale) emission (jets? winds?) Molecular outflows (v~100 km/s, ~100 pc) Near-IR IFU (e.g. MANGA): <1 kpc outflow Gamma-rays: ~10 kpc outflows in Sgr A* (Fermi bubbles) Are there outflows in run-of-the-mill LLAGNs? Leon+2007; Alatalo+2011; Combes+2013 Nagar+2002, 2005 Su+2010; Malyshev+2017 Cheung+2016; Wylezalek+2017

Slide 40

Slide 40 text

Are there outflows in common LLAGNs? Outflows could be small-scale jets or winds Yes

Slide 41

Slide 41 text

Are there outflows in common LLAGNs? Outflows could be small-scale jets or winds Yes Open question: Why outflows smaller in LLAGNs/quiescent galaxies?

Slide 42

Slide 42 text

Capable of quenching some star formation (kinetic power ~ 10 radiative power) Energetics of outflows: promising for feedback Nagar+2005 These Palomar Sample LLAGNs and AGNs nicely fill in the low luminosity end of similar relationships for FR I and FR II radio galaxies (slanted crosses; Rawlings & Saunders 1991,with jet kinetic energy estimated from their kpc-scale radio lobes), and other radio galaxies (crosses; Celotti & Fabian 1993, with jet kinetic energy estimated from their parsec-scale radio jets). The data from other papers have been corrected to the value of H0 used in this paper. 9. A comparison of the “minimum jet power” (Qjet ) and the ki- energy injected into the ISM by supernovae type I and II for the o detected Palomar LLAGNs and AGNs. Filled circles are used lliptical galaxies. The solid line shows the line of equality. 12 R. S. Nemmen, T. Storchi-Bergmann and M. Eracleous Figure 11. The relation between the Bondi power PBondi as defined in equation (3) and the jet power, using the parameters inferred from the SED models in our sample. The dashed line corresponds to the PBondi−Pjet relation obtained by Balmaverde et al. (2008). http://mnras.oxfordjournal Downloaded from But no convincing evidence of them affecting host galaxies Nemmen+2014 SNR power = outflow power log ˙ Mc2 AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A= AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A= AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A= AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A=

Slide 43

Slide 43 text

Capable of quenching some star formation (kinetic power ~ 10 radiative power) Energetics of outflows: promising for feedback Nagar+2005 These Palomar Sample LLAGNs and AGNs nicely fill in the low luminosity end of similar relationships for FR I and FR II radio galaxies (slanted crosses; Rawlings & Saunders 1991,with jet kinetic energy estimated from their kpc-scale radio lobes), and other radio galaxies (crosses; Celotti & Fabian 1993, with jet kinetic energy estimated from their parsec-scale radio jets). The data from other papers have been corrected to the value of H0 used in this paper. 9. A comparison of the “minimum jet power” (Qjet ) and the ki- energy injected into the ISM by supernovae type I and II for the o detected Palomar LLAGNs and AGNs. Filled circles are used lliptical galaxies. The solid line shows the line of equality. 12 R. S. Nemmen, T. Storchi-Bergmann and M. Eracleous Figure 11. The relation between the Bondi power PBondi as defined in equation (3) and the jet power, using the parameters inferred from the SED models in our sample. The dashed line corresponds to the PBondi−Pjet relation obtained by Balmaverde et al. (2008). http://mnras.oxfordjournal Downloaded from But no convincing evidence of them affecting host galaxies Nemmen+2014 SNR power = outflow power log ˙ Mc2 AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A= AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A= AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A= AAACA3icbVBNS8NAFHzxs9avqEcvi0XwICUpgnorevEiVLC20May2WzapZtN2N0USujVX+FVT57Eqz/Eg//FbZqDtg4sDDNvePvGTzhT2nG+rKXlldW19dJGeXNre2fX3tt/UHEqCW2SmMey7WNFORO0qZnmtJ1IiiOf05Y/vJ76rRGVisXiXo8T6kW4L1jICNZG6tl2l8d91A1ind1OEHms9eyKU3VyoEXiFqQCBRo9+9ukSRpRoQnHSnVcJ9FehqVmhNNJuZsqmmAyxH3aMVTgiKrTYMQSlVMvy4+YoGNjBiiMpXlCo1z9Hc5wpNQ48s1khPVAzXtT8T+vk+rwwsuYSFJNBZktClOOdIymjaCASUo0HxuCiWTm24gMsMREm97Kpg93/vpF0qxVL6vu3VmlflUUU4JDOIITcOEc6nADDWgCgRE8wwu8Wk/Wm/VufcxGl6wicwB/YH3+ABtFl4A= Are they affecting host galaxies? not sure

Slide 44

Slide 44 text

Almeida, N, Wong+2018 c Lauer et al. (2005) d Wu & Cao (2005) e Wong et al. (2014) Figure 1. SED of NGC 3115 with table 1 data. The plot is the Figure 2. Simila Where is this mass going? probably a wind (not observed so far) Insights from NGC3115 SED Indirect evidence for strong wind, no extended jet Ivan Almeida • We obtained an in or € M / r0.77+0.02 0.01 on th implies that mass-loss t the RIAF is significant i consistent with previous retical RIAF expectatio • We constrain the fra heats electrons as ⇡ 0 retical studies of dissip suggest that electrons r viscously dissipated ene Huge mass-loss implied pure RIAF model

Slide 45

Slide 45 text

Almeida, N, Wong+2018 c Lauer et al. (2005) d Wu & Cao (2005) e Wong et al. (2014) Figure 1. SED of NGC 3115 with table 1 data. The plot is the Figure 2. Simila Where is this mass going? probably a wind (not observed so far) Insights from NGC3115 SED Open question: Any “direct” signatures of LLAGN winds? Indirect evidence for strong wind, no extended jet Ivan Almeida • We obtained an in or € M / r0.77+0.02 0.01 on th implies that mass-loss t the RIAF is significant i consistent with previous retical RIAF expectatio • We constrain the fra heats electrons as ⇡ 0 retical studies of dissip suggest that electrons r viscously dissipated ene Huge mass-loss implied pure RIAF model

Slide 46

Slide 46 text

Outflows and feedback in LLAGNs: Theory perspective TL;DR it’s messy

Slide 47

Slide 47 text

MHD and general relativistic MHD simulations w/ Pluto, HARM codes Simulations of winds from LLAGNs Investigating outflows and feedback from AGNs: wind power, momentum, mass Gammie+2003; Mignone+2007 Lkin dp/dt mout . “Black hole weather forecast”

Slide 48

Slide 48 text

Magnetohydrodynamics https://www.xkcd.com/1851/ Accretion disks are made of a “MAGIC”

Slide 49

Slide 49 text

a/M), α ters: Coroniti 90, 01 ApJ spheric “winds” (hybrid) Two origins for LLAGN winds Magnetic expulsion Thermal expansion / buoyancy Blandford-Payne and/or

Slide 50

Slide 50 text

Simulations of winds from LLAGNs Parameter space nitial configuration of the ADAF/SANE simulation. The top two panels show the mid-plane density and the magnetic flux threading the equatorial unction of radius. Note the extended size of the initial torus, which is required for the extremely long duration of this simulation. Note also the illations in the magnetic flux, which prevents the accreting gas from reaching the MAD state. The lower two panels show the logarithm of the d the gas-to-magnetic pressure ratio β of the initial torus in the poloidal plane. loops. Instead of using multiple poloidal loops, another ing up an ADAF/SANE simulation is to use a toroidal (e.g. Model A in Igumenshchev et al. 2003 and Model 0 in McKinney et al. 2012). al magnetic field of the ADAF/MAD simulation forms a idal loop centred at r = 300 (Fig. 3). The gas accreted by this simulation has the same orientation of the poloidal field throughout the run, so the net flux around the BH apidly and remains at a high value. The accretion flow is thus maintained in the MAD state. The minimum value of β in the initial torus is ∼50. The magnetic field construction is described in detail in Penna et al. (2012).3 3 In the notation of Penna et al. (2012), the ADAF/SANE magnetic field has rstart = 25M, rend = 550M and λB = 2.5. The ADAF/MAD magnetic field has rstart = 25M, rend = 810M and λB = 25. C ⃝ 2012 Harvard University, MNRAS 426, 3241–3259 Monthly Notices of the Royal Astronomical Society C ⃝ 2012 RAS at NASA Goddard Space Flight Ctr on April 7, 2013 nras.oxfordjournals.org/ Magnetized advection-dominated accretion 3245 Figure 3. Similar to Fig. 2 but for the ADAF/MAD simulation. The main difference is that the torus here has a single loop of field centred at radius r = 300. As a result, accretion causes magnetic flux of one sign to accumulate around the BH, leading to the MAD state. 2.3 Preliminary discussion of the simulations The two panels in Fig. 4 show snapshots from the end of the ADAF/SANE and ADAF/MAD simulations. In each panel, the black and white streaks and red arrows show velocity streamlines in the poloidal plane at azimuthal angle φ = 0, and the dashed lines correspond to one density scale height. The main difference between the two simulations is that the at NASA Goddard Space Fligh http://mnras.oxfordjournals.org/ Downloaded from Figure 1. Poloidal plane of the grid used in the simulations, shown at two zoom levels. uration of the ADAF/SANE simulation. The top two panels show the mid-plane density and the magnetic flux threading the equatorial dius. Note the extended size of the initial torus, which is required for the extremely long duration of this simulation. Note also the he magnetic flux, which prevents the accreting gas from reaching the MAD state. The lower two panels show the logarithm of the -magnetic pressure ratio β of the initial torus in the poloidal plane. tead of using multiple poloidal loops, another ADAF/SANE simulation is to use a toroidal el A in Igumenshchev et al. 2003 and Model ney et al. 2012). c field of the ADAF/MAD simulation forms a thus maintained in the MAD state. The minimum value of β in the initial torus is ∼50. The magnetic field construction is described in detail in Penna et al. (2012).3 at NASA Goddard Space Flight Ctr on April 7, 2013 http://mnras.oxfordjournals.org/ Downloaded from BH spin B strength + topology accretion rate importance Penna+2013

Slide 51

Slide 51 text

“Radio-mode” feedback through small-scale (<1 kpc) outflows? ≈ 0.01 pc for M=108 Msun No radiation pressure Simulations of winds from LLAGNs cf. also Narayan+; Sadowski+; Stone+; Yuan+; Bu+

Slide 52

Slide 52 text

“Radio-mode” feedback through small-scale (<1 kpc) outflows? ≈ 0.01 pc for M=108 Msun No radiation pressure Simulations of winds from LLAGNs cf. also Narayan+; Sadowski+; Stone+; Yuan+; Bu+

Slide 53

Slide 53 text

“Radio-mode” feedback through small-scale (<1 kpc) outflows? ≈ 0.01 pc for M=108 Msun No radiation pressure Simulations of winds from LLAGNs wind failed wind? wind cf. also Narayan+; Sadowski+; Stone+; Yuan+; Bu+

Slide 54

Slide 54 text

Teach us about central engine: jet or disk? (T, accr. rate, magn. field, particle acceleration) Need population study for LLAGNs Winds easily produced Power, momentum, mass flows need to be quantified Large parameter space to be explored with numerical simulations SUMMARY: LOW-LUMINOSITY AGNS Hard X-rays Outflows/feedback: Observations LLAGNs commonly produce small scale (<1 kpc) outflows Enough power for feedback, but not clear if host galaxies care Outflows/feedback: Theory R. Nemmen

Slide 55

Slide 55 text

Github Twitter Web E-mail Bitbucket Facebook Group figshare [email protected] rodrigonemmen.com @nemmen rsnemmen facebook.com/rodrigonemmen nemmen blackholegroup.org bit.ly/2fax2cT