Slide 7
Slide 7 text
using Recommendatio
n
data = load_movielens_100k()
all_items = collect(keys(data.item_attributes))
fm = FactorizationMachines(data)
fit!(fm, learning_rate=0.3, max_iter=100)
recommendations = recommend(fm, user, topk, all_items)
# => list of (item, score)
measure(Coverage(), map(first, recommendations), catalog=all_items)
Data downloader
New algorithm & interface
Non-accuracy evaluation