Slide 1

Slide 1 text

Clustering trees for visualising scRNA-seq data Luke Zappia @_lazappi_

Slide 2

Slide 2 text

Zappia L, Phipson B, Oshlack A. 2018. DOI:10.1371/journal.pcbi.1006245

Slide 3

Slide 3 text

Many clustering tools > 25% of all tools Data from www.scRNA-tools.org

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

How many clusters?

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

A tree of clusters?

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

Weighting edges In proportion = Number of cells on edge Number of cells in high res cluster

Slide 12

Slide 12 text

Some examples

Slide 13

Slide 13 text

My data iPSCs organoid

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

NPHS1

Slide 17

Slide 17 text

NPHS1

Slide 18

Slide 18 text

Cell cycle SC3 stability Number of genes

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

t-SNE 2 t-SNE 1 t-SNE 1 t-SNE 2

Slide 21

Slide 21 text

Summary Choosing the number of clusters is hard but important A clustering tree can help by showing: - Relationships between clusters - Which clusters are distinct - Where samples are changing Compact, information dense visualisation - Alternative to t-SNE plots (or similar)

Slide 22

Slide 22 text

Acknowledgements Everyone that makes tools and data available MCRI Bioinformatics Belinda Phipson MCRI KDDR Alex Combes @_lazappi_ oshlacklab.com lazappi.github.io/clustree Paper doi.org/10.1093/gigascience/giy083 Slides tidyurl.com/clustree-OzSingleCells Supervisors Alicia Oshlack Melissa Little