Slide 1

Slide 1 text

Rodrigo Nemmen Universidade de São Paulo Active galactic nuclei and blazars

Slide 2

Slide 2 text

Content of lectures Broad overview: observations and theory of active galactic nuclei (AGN) Some emphasis on jetted AGNs (blazars) and high-energy EM radiation

Slide 3

Slide 3 text

Outline of lectures 1.Historical perspective 2.Black hole physics 3.Observed zoo 4.The ins of BHs: accretion 5.The outs: jets 6.Blazars

Slide 4

Slide 4 text

References: theory Physical processes in active galactic nuclei. Blandford, R. in Active galactic nuclei Saas-Fee lecture notes Black holes, white dwarfs and neutron stars. Shapiro, S. L. & Teukolsky, S. A. (ch. 12, 14) More details Foundations of black hole accretion disk theory. Fragile, C. & Abramowicz, M. The Formation and Disruption of Black Hole Jets. Contoupoulos, I. et al. (ch. 3, 6, 7)

Slide 5

Slide 5 text

References: observations Active galactic nuclei. Beckmann V. & Schrader, C. An introduction to active galactic nuclei: Classification and unification. New Ast. Rev. Tadhunter, C. Relativistic jets in active galactic nuclei. ARAA. Blandford, R. arXiv:1812.06025 Gamma-Ray Observations of Active Galactic Nuclei. ARAA. Madejski, G. & Sikora, M.

Slide 6

Slide 6 text

What is an active galactic nuclei? Presence of accreting, supermassive black hole at the center of a galaxy AGN

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

What physics is necessary? general relativity Kerr spacetime (magneto)hydrodynamics aka MHD

Slide 10

Slide 10 text

What physics is necessary? general relativistic MHD (GRMHD) at low accretion rates: general relativistic kinetic theory (GRK)

Slide 11

Slide 11 text

Nature of AGNs: Accreting black holes • enormous free energy • can be extracted by particles/fields Gravitational energy source

Slide 12

Slide 12 text

Challenges

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

AGNs: multifaceted phenomenon (challenge #1) Depending on how you observe, AGNs look different Appearance varies with EM energy band (radio to gamma-rays)

Slide 15

Slide 15 text

AGNs: multifaceted phenomenon (challenge #1) Depending on how you observe, AGNs look different Appearance varies with EM energy band (radio to gamma-rays) radio jet! thermal UV! dusty torus! hard X-rays! broad lines! rapid variability!

Slide 16

Slide 16 text

Quasar light curves imply Δtvar < 1 light-week Size of system must satisfy size < cΔtvar variability timescale light-crossing radius ≈0.01 pc ~ 1000 AU

Slide 17

Slide 17 text

Supermassive black holes (SMBHs) are extremely small on the sky Very hard to observe (challenge #2) SMBH Grapefruit <10-4 pc >10 kpc event horizon size galaxy size ~109

Slide 18

Slide 18 text

AGNs easily outshine their host galaxies (challenge #3) this image: z ~ 0.2 dL ~ 1 Gpc Hubble Space Telescope Bahcall+1997

Slide 19

Slide 19 text

Steven Weinberg When I received my undergraduate degree — about a hundred years ago — the physics literature seemed to me a vast, unexplored ocean, every part of which I had to chart before beginning any research of my own. How could I do anything without knowing everything that had already been done? Fortunately, in my first year of graduate school, I had the good luck to fall into the hands of senior physicists who insisted, over my anxious objections, that I must start doing research, and pick up what I needed to know as I went along. It was sink or swim. To my surprise, I found that this works. I managed to get a quick PhD — though when I got it I knew almost nothing about physics. But I did learn one big thing: that no one knows everything, and you don’t have to. Another lesson to be learned,to continue work of many theoretical and experimental physicists has been able to sort it out, and put everything (well, almost everything) together in a beautiful theory known as the standard model.My advice is to go for the messes — that’s where the action is. My third piece of advice is probably the hardest to take. It is to forgive yourself for wasting time. Students are only asked to solve problems that their professors (unless unusually cruel) know to be solvable. In addition,it doesn’t matter ifthe problems are scientifically important — they have to be solved to pass the course. But in the real world,it’s very hard to know which problems are important, and you never know whether at a given moment in history a problem is solvable. At the beginning of the twentieth century,several leading physicists,including Lorentz and Abraham, were trying to work out a theory of the electron. This was partly in order to understand why all attempts to detect effects of Earth’s motion through the to spending most of your time not being creative, to being becalmed on the ocean of scientific knowledge. Finally, learn something about the history ofscience,or at a minimum the history ofyour own branch of science. The least important reason for this is that the history may actually be of some use to you in your own scientific work. For instance, now and then scientists are hampered by believing one of the over- simplified models of science that have been proposed by philosophers from Francis Bacon to Thomas Kuhn and Karl Popper. The best antidote to the philosophy of science is a knowledge ofthe history ofscience. More importantly, the history of science can make your work seem more worthwhile to you. As a scientist, you’re probably not going to get rich. Your friends and relatives Four golden lessons Scientist Advice to students at the start of their scientific careers. (1979 Nobel Prize, Physics) 1. Learn to swim as you try not to drown. — No one knows everything, and you don’t have to. 2. Aim for the rough water (messes). — that’s where the action is. 3. Forgive yourself for wasting time. 4. Learn the history of science. — at least of your own field. 2003 Nature slide by Ken Nagamine

Slide 20

Slide 20 text

Historical perspective on AGNs 1783: Newtonian “dark stars” predicted 1915: Einstein publishes his field equation 1916: black hole solution derived from GR 1918: "curious straight ray" in galaxy M87, "connected with the nucleus by a thin line of matter”—jets discovered 1963: strong optical point source found at 3C 273 nucleus—quasars discovered Early 1990s: HST finds SMBHs at centers of nearby galaxies Late 1990s: stellar orbits at Galactic Center— strongest BH case until 2015 (Sagittarius A*, 4×106 M⦿ ) Curtis 1918 Schmidt+1963 Ford+1994; Harms+1994; Ferrarese & Ford 2004 Michell 1783 Schwarzschild 1916 Einstein 1915 Genzel & Gillessen 2010

Slide 21

Slide 21 text

Historical perspective on AGNs Late 1990s, early 2000s: M-σ relation—SMBHs and host galaxies are tightly connected 2000: SMBHs disturb thermodynamics of entire galaxy clusters 2003: Sloan Digital Sky Survey (SDSS) finds >100k AGNs 2015: direct observation of gravitational waves from stellar-mass BHs 2018a: 1st multimessenger observation from AGNs (blazar TXS 0506+056) 2018b: GRAVITY resolves orbit at r = 7M (Sgr A*) 2019: EHT images event horizon (M87*) McNamara+2000; Fabian 2012 Abazajian+2003 IceCube, Fermi LAT Collaborations Magorrian+1998; Kormendy & Ho 2013 Abbott+2015 Abuter+2018 EHTC

Slide 22

Slide 22 text

(new technologies)∙(engineering) = (new astronomical windows) (new observations)×(grad students) = paradigm change

Slide 23

Slide 23 text

Pace of discovery is accelerating Future: immense discovery space awaiting We entered 2nd golden age of black hole (astro)physics General lessons from history

Slide 24

Slide 24 text

Black hole physics

Slide 25

Slide 25 text

A general relativity primer Einstein’s field equation Stress-energy Ricci curvature Metric Ricci scalar 㱺 For a free particle: Geodesic equation Newtonian analogue Poisson equation spacetime curvature = constant × matter-energy R μν − 1 2 g μν R = 8πG c4 T μν Solution to field equation gives Line element Metric

Slide 26

Slide 26 text

What is a black hole? Remarkable prediction of general relativity Normal object Black hole surface event horizon singularity from black hole primer for undergrads

Slide 27

Slide 27 text

Event horizon: one-way membrane, matter/ energy can fall in, but nothing gets out Black hole event horizon singularity Region inside event horizon causally cut-off from outside RS = 2GM c2 = 2.95 ✓ M M ◆ km Radius of event horizon: Schwarzschild radius Gravitational radius: R g ≡ GM c2 Useful scale

Slide 28

Slide 28 text

Growth of black holes If particles fall into the black hole M increases Schwarzschild radius RS = 2M increases surface area increases

Slide 29

Slide 29 text

Growth of black holes If particles fall into the black hole M increases Schwarzschild radius RS = 2M increases surface area increases There is no limit to how big a BH can grow. From astrophysics: Mmin = 3.6 MSun Mmax ~ 1010 MSun

Slide 30

Slide 30 text

What is a black hole? Once inside, nothing escapes Massive, compact astronomical object: gravity so strong that it traps everything that falls inside the event horizon

Slide 31

Slide 31 text

What is a black hole? Massive, compact astronomical object: gravity so strong that it traps everything that falls inside the event horizon Once inside, nothing escapes Father-in-law Mother- in-law

Slide 32

Slide 32 text

What is a black hole? Massive, compact astronomical object: gravity so strong that it traps everything that falls inside the event horizon Once inside, nothing escapes

Slide 33

Slide 33 text

What is a black hole? Massive, compact astronomical object: gravity so strong that it traps everything that falls inside the event horizon Once inside, nothing escapes

Slide 34

Slide 34 text

A black hole has no hair All black hole solutions of Einstein’s equation completely characterized by only three externally observable classical parameters: Mass M Spin: angular momentum J Charge Q J ≡ a GM2 c −1 ≤ a ≤ 1 spin parameter No-hair theorem All other information (“hair”=metaphor) disappears behind the event horizon, therefore permanently inaccessible to external observers

Slide 35

Slide 35 text

Types of black holes Mass M Spin a Charge Q Schwarzschild spacetime Kerr spacetime Reissner–Nordström spacetime

Slide 36

Slide 36 text

Schwarzschild black hole Simplest black hole Spherically symmetric spacetime Relatively “easy” to handle analytically ds2 = − ( 1 − 2M r ) dt2 + ( 1 − 2M r ) −1 dr2 + r2 (dθ2 + sin2 θdϕ2 ) Schwarzschild geometry in Schwarzschild coordinates

Slide 37

Slide 37 text

Kerr black hole Conservation of angular momentum leads to spinning black holes Rotational energy deforms spacetime → Kerr spacetime Kerr metric considerably more complex than Schwarzschild ds2 = − ( 1 − 2Mr ρ2 ) dt2 − 4Mar sin2 θ ρ2 dϕdt + ρ2 Δ dr2 + ρ2dθ2 + ( r2 + a2 + 2Mra2 sin2 θ ρ2 ) sin2 θdϕ2 a ≡ J/M, ρ2 ≡ r2 + a2 cos2 θ, Δ ≡ r2 − 2Mr + a2 Boyer-Lindquist coords.

Slide 38

Slide 38 text

Main parameters for astrophysical BHs Gravity Mass M Spin a∗ Magnetic flux Φ Predict Energy output in all forms (erg/s or LEdd) (M⦿ = 2×1033 g) (1 = max spin) units Accretion Mass accretion rate (M⦿ /yr or ) ˙ MEdd AAACBXicdVDLSgMxFM3UV62vVpdugkVwIUNmbLXdFUVwI1SwD2iHksmkbWjmQZKplGHWfoVbXbkTt36HC//F9CGo6IELh3PuTe49bsSZVAi9G5ml5ZXVtex6bmNza3snX9htyjAWhDZIyEPRdrGknAW0oZjitB0Jin2X05Y7upj6rTEVkoXBrZpE1PHxIGB9RrDSUi9f6HqhSq7TXtIVPrz0vLSXLyIT2ZVyyYbItMuoalU1KSOrelqClolmKIIF6r38h36DxD4NFOFYyo6FIuUkWChGOE1z3VjSCJMRHtCOpgH2qTz2xiySM+oksytSeKhND/ZDoStQcKZ+H06wL+XEd3Wnj9VQ/vam4l9eJ1b9ipOwIIoVDcj8o37MoQrhNBLoMUGJ4hNNMBFMrw3JEAtMlA4up/P4Ohr+T5q2aZ2Y9k2pWDtfJJMF++AAHAELnIEauAJ10AAE3IEH8AiejHvj2XgxXuetGWMxswd+wHj7BMUUmPA= ˙ M AAAB+XicdVDLSgMxFM3UV62vqks3wSK4kCEzbbHdFd24ESrYB7RDyWTSNjSTGZJMoQz9CLe6cidu/RoX/ovptIKKHggczrmHe3P8mDOlEXq3cmvrG5tb+e3Czu7e/kHx8KitokQS2iIRj2TXx4pyJmhLM81pN5YUhz6nHX9yvfA7UyoVi8S9nsXUC/FIsCEjWBup0w8ind7OB8USsut1VKlUIbKryHXdmiGo7NbqDnRslKEEVmgOih8mSZKQCk04VqrnoFh7KZaaEU7nhX6iaIzJBI9oz1CBQ6ougimLVUa9NLt8Ds+MGcBhJM0TGmbq93CKQ6VmoW8mQ6zH6re3EP/yeoke1ryUiTjRVJDlomHCoY7gogYYMEmJ5jNDMJHMnA3JGEtMtCmrYPr4+jT8n7Rd2ynb7l2l1LhaNZMHJ+AUnAMHXIIGuAFN0AIETMADeARPVmo9Wy/W63I0Z60yx+AHrLdP1nGUnQ==

Slide 39

Slide 39 text

Main problem in BH astrophysics AGN(t) = f(M, a * , · M)

Slide 40

Slide 40 text

Eddington luminosity LEdd M Luminosity L from central object photon field

Slide 41

Slide 41 text

Eddington luminosity LEdd p e- r Luminosity L from central object When is the radiation strong enough to prevent accretion of particles? photon field

Slide 42

Slide 42 text

F rad = F g Prad = Frad A = F c ) Frad = FA c ) Frad = L 4⇡r2 T c AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0= Solve this to get LEdd: radiation force on an electron flux area

Slide 43

Slide 43 text

F rad = F g Prad = Frad A = F c ) Frad = FA c ) Frad = L 4⇡r2 T c AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0= Solve this to get LEdd: radiation force on an electron flux area

Slide 44

Slide 44 text

F rad = F g Prad = Frad A = F c ) Frad = FA c ) Frad = L 4⇡r2 T c AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0= Solve this to get LEdd: radiation force on an electron F g = GM(m e + m p ) r2 ≈ GMm p r2 flux area why?

Slide 45

Slide 45 text

F rad = F g Prad = Frad A = F c ) Frad = FA c ) Frad = L 4⇡r2 T c AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0= Solve this to get LEdd: radiation force on an electron F g = GM(m e + m p ) r2 ≈ GMm p r2 L Edd = 4πGMm p c σT = 1.3 × 1038 ( M M⊙ ) erg s−1 flux area why?

Slide 46

Slide 46 text

p e- M photon field Eddington luminosity: importance L > L Edd

Slide 47

Slide 47 text

Eddington luminosity: importance A system radiating at L > LEdd can halt mass accretion due to strong radiation pressure Roughly maximal luminosity that can be powered by accretion (if spherical symmetry) Useful luminosity unit in BH astrophysics

Slide 48

Slide 48 text

Eddington accretion rate • Assume an engine radiating at L = LEdd • If it were converting mass to radiative energy with efficiency η

Slide 49

Slide 49 text

L Edd = η · M Edd c2 ⇒ · M Edd ≡ L Edd ηc2 • Assume an engine radiating at L = LEdd • If it were converting mass to radiative energy with efficiency η usually η = 0.1 Eddington accretion rate

Slide 50

Slide 50 text

L Edd = η · M Edd c2 ⇒ · M Edd ≡ L Edd ηc2 • Assume an engine radiating at L = LEdd • If it were converting mass to radiative energy with efficiency η = 3 ( 0.1 η ) ( M 108M⊙ ) M ⊙ yr−1 Useful accretion rate unit in BH astrophysics usually η = 0.1 Eddington accretion rate

Slide 51

Slide 51 text

Eddington time tEdd · M = dM dt = · M Edd ⇒ dM dt = M tEdd Assume BH accreting at Eddington rate also known as Salpeter time tS

Slide 52

Slide 52 text

Eddington time tEdd · M = dM dt = · M Edd ⇒ dM dt = M tEdd Assume BH accreting at Eddington rate t Edd ≡ ηcσ T 4πGmp = 4 × 107 ( η 0.1 ) yr Useful timescale also known as Salpeter time tS

Slide 53

Slide 53 text

Useful websites and apps for grad students arxiv.org ui.adsabs.harvard.edu sci-hub.tw voxcharta.org Find papers Manage papers Mendeley, bibdesk, Papers, Jabref

Slide 54

Slide 54 text

Pro tips Organize papers using convention: 1. Folders named after categories 2. Filename: 3. Use a desktop search app to find (spotlight, cerebro, albert)

Slide 55

Slide 55 text

No content

Slide 56

Slide 56 text

No content

Slide 57

Slide 57 text

Important lengths risco: Innermost stable circular orbit from now on, G = c = 1 r isco = 6M for a ∗ = 0

Slide 58

Slide 58 text

Misner, Thorne & Wheeler Effective potential for orbits around a Schwarzschild black hole E = 1 2 ( dr dτ) 2 + V eff V eff r/M effective potential face-on view of accretion disk innermost stable circular orbit 6M edge-on view

Slide 59

Slide 59 text

Misner, Thorne & Wheeler Effective potential for orbits around a Schwarzschild black hole E = 1 2 ( dr dτ) 2 + V eff V eff r/M effective potential innermost stable circular orbit face-on view of accretion disk face-on view of accretion disk risco

Slide 60

Slide 60 text

Important radii risco: Innermost stable circular orbit from now on, G = c = 1 r isco = 6M for a ∗ = 0 rc: photon capture radius also called photon sphere or photon ring r c = 3M seen from ∞ 27M apparent radius for a ∗ = 0

Slide 61

Slide 61 text

Schwarzschild radius photon ring light rays https://www.codeproject.com/Articles/994466/Ray-Tracing-a-Black-Hole-in-Csharp

Slide 62

Slide 62 text

Dependence of radii on BH spin Bardeen+1972 a∗

Slide 63

Slide 63 text

Dependence of radii on BH spin Bardeen+1972 a∗ horizon equator photon capture isco + - - +

Slide 64

Slide 64 text

Important timescales Light-crossing t l = r c = 2 ( r 104M ) ( M 108M⊙ ) months as a function of distance r from 108 M⦿ BH Sound-crossing t s = r cs = 700 ( r 104M ) ( M 108M⊙ ) ( T 105K ) −1/2 years Accretion t acc = r vr = 107 ( α 0.1 ) −4/5 ( r 104M) 5/4 ( M 108M⊙ ) 3/2 ( · M 0.1 · MEdd ) −3/10 years ~ viscous time Free-fall t ff = ( GM 2r3 ) −1/2 = 23 ( r 104M) 3/2 ( M 108M⊙ ) years ~ dynamical time

Slide 65

Slide 65 text

Gravitational sphere of influence of SMBHs r sph ≈ GM σ2 = 5 ( M 108M⊙ ) ( σ 300 km s−1 ) −2 pc stellar velocity dispersion (bulge)

Slide 66

Slide 66 text

Gravitational sphere of influence of SMBHs r sph ≈ GM σ2 = 5 ( M 108M⊙ ) ( σ 300 km s−1 ) −2 pc stellar velocity dispersion (bulge) rS / rsph = 10-6 Some size ratios rgal / rsph > 104 rbulge / rsph = 200

Slide 67

Slide 67 text

Efficiency of release of free energy from BH accretion disks r → ∞ How much orbital energy lost by particle when it disappears behind event horizon? 1st order estimate of Lacc

Slide 68

Slide 68 text

How much orbital energy lost by one particle? E acc = U(r → ∞) − U(r surface ) gravitational potential energy = GMm rsurface

Slide 69

Slide 69 text

E acc = U(r → ∞) − U(r surface ) How much orbital energy lost by one particle? gravitational potential energy = GMm rsurface Energy lost by continuous inflow of particles? · m = dm dt dE acc dt = GM · m rsurface ⇒ L = GM · m rsurface

Slide 70

Slide 70 text

E acc = U(r → ∞) − U(r surface ) How much orbital energy lost by one particle? gravitational potential energy = GMm rsurface Energy lost by continuous inflow of particle? · m = dm dt dE acc dt = GM · m rsurface ⇒ L = GM · m rsurface Luminosity released from accretion L = η · mc2 ⇒ η = L · mc2 = GM rsurface c2 maximized for compact objects

Slide 71

Slide 71 text

E acc = U(r → ∞) − U(r surface ) How much orbital energy lost by one particle? gravitational potential energy = GMm rsurface Energy lost by continuous inflow of particle? · m = dm dt dE acc dt = GM · m rsurface ⇒ L = GM · m rsurface Luminosity released from accretion L = η · mc2 ⇒ η = L · mc2 = GM rsurface c2 maximized for compact objects

Slide 72

Slide 72 text

For a Schwarzschild BH η = 0.5 incorrect Newtonian value Correct GR result η = V eff (∞) − V eff (6M) = − V eff (6M) = 1 18 = 0.06

Slide 73

Slide 73 text

Itaipu Dam − 14 GW ⌘ = mgh mc2 = 10 14 ✓ h 100 m ◆

Slide 74

Slide 74 text

Nuclear fusion ⌘ = 0.008 ⇥ 0.1 ⇠ 8 ⇥ 10 4 Tsar bomba

Slide 75

Slide 75 text

face-on view of accretion disk ISCO radius depends on the BH spin face-on view of accretion disk a * = 0 a * = 0.998 Disk is: hotter larger surface area higher velocities edge-on view

Slide 76

Slide 76 text

UO aim o 0.2 0.5 0.7 0.6 0.9 0.95 0.96 1 mO. (3.12) Fig.3.2. Efficiency of energy release by gas accreting through a thin accretion disk onto a spinning black hole. The quantity plotted is 1 - em. as a function of the hole angular η Blandford 1990 a * η=0.42 at a∗ =0.998

Slide 77

Slide 77 text

Black hole spin leaves imprint on accretion disk Faster, hotter, brighter but gravitational redshift

Slide 78

Slide 78 text

AGN zoo

Slide 79

Slide 79 text

Supermassive 106-1010 solar masses one in every galactic nucleus 5-80 solar masses ~107 per galaxy Stellar black holes black holes

Slide 80

Slide 80 text

Supermassive 106-1010 solar masses one in every galactic nucleus 5-80 solar masses ~107 per galaxy Stellar black holes ~1 Mpc ~100 kpc Active galactic nuclei Quasars Radio galaxies black holes Gamma- ray bursts Microquasars 1 pc = 3×1013 km Blazars Binary systems

Slide 81

Slide 81 text

Phenomenology of active galactic nuclei 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering based on Tadhunter+08 Nuclear lum inosity Radio power Broad / Narrow lines

Slide 82

Slide 82 text

Phenomenology of active galactic nuclei 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering based on Tadhunter+08 Nuclear lum inosity Radio power Broad / Narrow lines Type I Type II

Slide 83

Slide 83 text

λ (Angstrom) AGNs with and without broad emission lines BH’s gravity accelerating the gas to v>1000 km/s but half of AGNs show narrower lines Flux (arbitrary units)

Slide 84

Slide 84 text

λ (Angstrom) 6.7. AGN unification 139 Ionization cone Radio jet NLR clouds illuminated by central source Black hole accretion disk And BLR Clumpy dusty torus Type-II AGNs Radio loud Radio quiet Type-I AGNs Radio loud Radio quiet Blazars Type I Type II Unified model of AGNs

Slide 85

Slide 85 text

Phenomenology of active galactic nuclei 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering Nuclear lum inosity Radio power Broad / Narrow lines

Slide 86

Slide 86 text

Phenomenology of active galactic nuclei 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering Nuclear lum inosity Radio power Radio-quiet Radio-loud Radiogalaxies (FRI, FRII) radio-loud quasar blazars (BL Lac, FSRQ) Seyferts Radio-quiet quasar

Slide 87

Slide 87 text

Phenomenology of active galactic nuclei 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering Nuclear lum inosity Radio power Radio-quiet Radio-loud 10% of AGNs are radio-loud

Slide 88

Slide 88 text

Phenomenology of active galactic nuclei based on Tadhunter+08 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering Nuclear lum inosity Radio power Broad / Narrow lines

Slide 89

Slide 89 text

Phenomenology of active galactic nuclei based on Tadhunter+08 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering Nuclear lum inosity Radio power Broad / Narrow lines Low- luminosity AGNs

Slide 90

Slide 90 text

Phenomenology of active galactic nuclei based on Tadhunter+08 8 m VLT reveals a um of the elliptical mplication is that cted in scattered cases, spectropo- ontrast of the scat- m and narrow line trum in polarized en et al., 1999). ons are static over a Sy1). However, ve only been pos- od is short relative 07 to 108 yr). Thus ons over their life- nt over the short e AGN are known mescales of years of NGC4151 and een Sy1 and Sy2 and Perez, 1984; nuclei have been similar timescale 1996). By analogy we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering Nuclear lum inosity Radio power Broad / Narrow lines Low- luminosity AGNs Quasars

Slide 91

Slide 91 text

ken on the 8 m VLT reveals a llar continuum of the elliptical A further complication is that may be detected in scattered ight. In such cases, spectropo- nhance the contrast of the scat- ar continuum and narrow line tic Sy1 spectrum in polarized d, 1985; Cohen et al., 1999). t classifications are static over Sy1 always a Sy1). However, ts of AGN have only been pos- is time period is short relative of AGN ($ 107 to 108 yr). Thus e classifications over their life- eing apparent over the short n fact, some AGN are known hanges on timescales of years the cases of NGC4151 and anged between Sy1 and Sy2 ars (Penston and Perez, 1984; me LINER nuclei have been eristics on a similar timescale ower et al., 1996). By analogy ry systems, we must also be the diversity in their properties, some of the most important in- sights into the nature of AGN have been gained by considering ? ˙ M / ˙ M E dd Phenomenology of active galactic nuclei based on Tadhunter+08 orientation orientation TOR = f( ˙ M) Nuclear lum inosity Radio power Broad / Narrow lines spin a magnetic flux Φbh

Slide 92

Slide 92 text

Issues with the AGN unification proposal

Slide 93

Slide 93 text

Current compilation of spin constraints D 0.(.0h) Many rapidly spinning BHs. More slowly spinning population may emerge at higher masses. Reynolds (2013; arXiv:1302.3260) … also see Sesana et al. (2014) BH spin distribution from X-ray spectroscopy (only radio quiet AGN) 106 107 108 109 Black hole mass (MSun) cf. also Brenneman+13; King+13 Reynolds+13 Spin a XMM-Newton + Suzaku Why no jets?

Slide 94

Slide 94 text

Sikora+2007 log Lbol/LEdd (radio loudness) BLRG RL quasars FR I PG quasars Sy + LINER The BH knows about its host galaxy Radio louds Radio quiets

Slide 95

Slide 95 text

log Lbol/LEdd (radio loudness) Radio quiets ellipticals spirals spin~1? spin<0.3 ? Wilson & Colbert 95 Moderski+96,98 Tchekhovskoy+10 Radio louds Sikora+2007 The BH knows about its host galaxy

Slide 96

Slide 96 text

Basic equations for BH accretion

Slide 97

Slide 97 text

D⇢ Dt + ⇢r · v = 0 ⇢ Dv Dt = rp ⇢r + r · T ⇢ D(e/⇢) Dt = pr · v + T2/µ Conservation of Mass Momentum Energy D⇢ Dt + ⇢r · v = 0 ⇢ Dv Dt = rp ⇢r + r · T ⇢ D(e/⇢) Dt = pr · v + T2/µ r · Frad r · q D⇢ Dt + ⇢r · v = 0 ⇢ Dv Dt = rp ⇢r + r · T ⇢ D(e/⇢) Dt = pr · v + T2/µ r · Frad r · q Equations of Newtonian hydrodynamics Plus: equation of state opacity description viscosity taken from accretion lecture at “bh gastrophysics” course Rate of change “following the fluid”

Slide 98

Slide 98 text

General Relativistic Hydrodynamics • The general relativistic hydrodynamics equations are obtained from the local conservation laws of the stress-energy tensor, Tµν (the Bianchi identities), and of the matter current density Jµ (the continuity equation): rµ(⇢uµ) = 0 AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= rµTµ⌫ = 0 AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== equations of motion (µ = 0, ..., 3) AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc= AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc= AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc= AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc= : covariant derivative associated with the four dimensional spacetime metric rµ AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH gµ⌫ AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU= AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU= AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU= AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU= • The density current is given by Jµ = ⇢uµ AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ is the fluid 4-velocity and is the rest-mass density in a locally inertial reference frame. uµ AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav ⇢ AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk= AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk= AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk= AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk= slide: Yosuke Mizuno

Slide 99

Slide 99 text

rµ(⇢uµ) = 0 AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c= rµTµ⌫ = 0 AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ== • GRHD equations + Maxwell equations rµ ⇤Fµ⌫ = 0 AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ== AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ== AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ== AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ== where Fµν, Faraday tensor may be constructed from electric and magnetic fields Eα, Bα as measured in a generic frame as Fµ⌫ = UµE⌫ U⌫Eµ ( g) 1/2⌘µ⌫ U B AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM= AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM= AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM= AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM= where ηµνλδ: the fully-antisymmetric symbol and g : determinant of 4- metric • The dual Faraday tensor is ⇤Fµ⌫ = UµB⌫ U⌫Bµ ( g) 1/2⌘µ⌫ U E AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA== AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA== AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA== AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA== • Ideal MHD limit Fµ⌫u⌫ = 0 AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ== AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ== AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ== AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ== Jµ = ⇢quµ + Fµ⌫u⌫ AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc= AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc= AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc= AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc= ! 1 AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg== AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg== AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg== AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg== U↵ AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw== AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw== AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw== AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw== General relativistic magnetohydrodynamics slide: Yosuke Mizuno

Slide 100

Slide 100 text

Accretion flow states

Slide 101

Slide 101 text

Thermal sta (NLS1s?) Intermediat (Quasars, Se M · a Simple description of an accretion disk · M/ · M Edd mass accretion rate h /r disk thickness · M = 4πr2ρv r mass accr. rate related to gas density

Slide 102

Slide 102 text

t cool ≪ t acc h/r ⇠ 1 –8 –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) M · 0 log (L/L Edd ) a b · M/ · M Edd 1 RIAFs h/r ⌧ 1 Thin disks –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) M · log (L/L Edd ) a b –8 (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) 0 Figure 7 (a) Schematic diagram showing the configuration of the accretion flow in different accretion rate ˙ MBH (panel adapted from Esin et al. 1997, Narayan & McClintock in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h transition radius Rtr where the thin disk is truncated becomes smaller with increas truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal from observations. The transition radii were estimated by modeling spectra of ind Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h LLAGN, low-luminosity active galactic nuclei. h/r ⇠ 1 0.01 then move on and describe consequence for efficiency q adv ≫ q − q adv ≫ q − Super-Eddington q − ≫ q adv Unified theory of black hole accretion flows L/L Edd

Slide 103

Slide 103 text

t cool ≫ t acc h/r ⌧ 1 Thin disks · M/ · M Edd 1 –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) M · log (L/L Edd ) a b –8 (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) 0 Figure 7 (a) Schematic diagram showing the configuration of the accretion flow in different accretion rate ˙ MBH (panel adapted from Esin et al. 1997, Narayan & McClintock in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h transition radius Rtr where the thin disk is truncated becomes smaller with increas truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal from observations. The transition radii were estimated by modeling spectra of ind Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h LLAGN, low-luminosity active galactic nuclei. h/r ⇠ 1 0.01 then move on and describe consequence for efficiency q adv ≫ q − q adv ≫ q − Super-Eddington Unified theory of black hole accretion flows h/r ⇠ 1 –8 –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) M · 0 log (L/L Edd ) a b RIAFs radiatively inefficient accretion flow L/L Edd

Slide 104

Slide 104 text

h/r ⇠ 1 h/r ⌧ 1 Thin disks –8 –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) M · 0 log (L/L Edd ) a b · M/ · M Edd 1 RIAFs –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) M · log (L/L Edd ) a b –8 (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) 0 Figure 7 (a) Schematic diagram showing the configuration of the accretion flow in different accretion rate ˙ MBH (panel adapted from Esin et al. 1997, Narayan & McClintock in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h transition radius Rtr where the thin disk is truncated becomes smaller with increas truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal from observations. The transition radii were estimated by modeling spectra of ind Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h LLAGN, low-luminosity active galactic nuclei. h/r ⇠ 1 0.01 q adv ≫ q − q adv ≫ q − Super-Eddington Unified theory of black hole accretion flows

Slide 105

Slide 105 text

h/r ⇠ 1 h/r ⌧ 1 Thin disks –8 –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) M · 0 log (L/L Edd ) a b · M/ · M Edd 1 RIAFs –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) M · log (L/L Edd ) a b 0.01 q adv ≫ q − –8 (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) 0 Figure 7 (a) Schematic diagram showing the configuration of the accretion flow in different accretion rate ˙ MBH (panel adapted from Esin et al. 1997, Narayan & McClintock in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h transition radius Rtr where the thin disk is truncated becomes smaller with increas truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal from observations. The transition radii were estimated by modeling spectra of ind Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h LLAGN, low-luminosity active galactic nuclei. h/r ⇠ 1 Super-Eddington Unified theory of black hole accretion flows Adapted from Yuan & Narayan 2014, ARA&A t diffusion ≫ t acc photon

Slide 106

Slide 106 text

h/r ⇠ 1 h/r ⌧ 1 Adapted from Yuan & Narayan 2014, ARA&A Thin disks Unified theory of black hole accretion flows –8 –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) M · 0 log (L/L Edd ) a b · M/ · M Edd 1 RIAFs –6 –4 –2 0 Brig C Thermal state (NLS1s?) Intermediate state? (Quasars, Seyferts?) Hard state (LLAGNs, Seyferts) M · log (L/L Edd ) a b –8 (LLAGNs, Seyferts) Quiescent state (LLAGNs, Sgr A*) 0 Figure 7 (a) Schematic diagram showing the configuration of the accretion flow in different accretion rate ˙ MBH (panel adapted from Esin et al. 1997, Narayan & McClintock in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h transition radius Rtr where the thin disk is truncated becomes smaller with increas truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal from observations. The transition radii were estimated by modeling spectra of ind Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h LLAGN, low-luminosity active galactic nuclei. h/r ⇠ 1 0.01 Super-Eddington radiative efficiency η ≪ 0.1 η = 0.06 − 0.4 η ≪ 0.1 L/L Edd

Slide 107

Slide 107 text

thin or thick. In thin disks, most of the mass supplied at large radii reaches the central black hole. By contrast, in thick disks, very little of the supplied mass ends up accreting into the hole. Instead, most of the mass circulates in convective motions (33, 34) or is driven away in an unbound outflow (35, 36). This in turn causes the amount of radiation from the accretion flow to decrease drastically. Because the fate of sup- plied matter depends so strongly on the mode of accretion (thin versus thick), it is likely that bright accreting black holes occupy a Jet Coronal envelope Inner torus Main disk body KDP 30 20 10 10 20 0 –10 1 SNE, GRB Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN 2 2 3 log R (RS ) log R (km) log M (MEdd ) log M (g s–1) Regimes of BH accretion Super-Eddington, radiation-trapped TDE, AGN? Near-Eddington Sub-Eddington om the accretion flow to Because the fate of sup- so strongly on the mode rsus thick), it is likely black holes occupy a Main disk body KDP 30 20 10 0 SNE, GRB Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN log M (MEdd ) log M (g s–1) Main disk body KDP 20 10 0 –10 1 Radiation–trapped Bright XRBs, AGN Faint XRBs, AGN 2 log R (RS ) log M (MEdd ) log M (g s–1) the central black s, very little of the ng into the hole. ates in convective way in an unbound turn causes the accretion flow to the fate of sup- ngly on the mode ick), it is likely holes occupy a KDP 30 10 20 SNE, GRB Radiation–trapped 2 3 log R (km) log M (MEdd ) log M (g s–1) Adapted from Narayan & Quataert 2005 Faint XRBs, low- luminosity AGNs Bright XRB, quasars, Seyferts log R (pc) -4 -5 ? ? slide from BASS ESO 2018 talk

Slide 108

Slide 108 text

Jets slides in this section come from jets lecture in “BH gastrophysics” course

Slide 109

Slide 109 text

Hercules A Black holes produce relativistic jets of particles Size of the galaxy

Slide 110

Slide 110 text

Hercules A 3C 31 ~1 Mpc ~100 kpc M87 Cosmic particle accelerators! Black holes produce relativistic jets of particles Huge powers (enough to unbind a galaxy) Aligned over long periods (millions of years)

Slide 111

Slide 111 text

How are relativistic jets produced by black holes? Conjecture: from spinning black holes Huge free energy Stable gyroscopes Growing evidence that this is correct Theory/simulations Observations (?)

Slide 112

Slide 112 text

https://www.youtube.com/watch?v=9MHuhcFQsBg Penrose process: Spinning black hole has free energy that can be extracted Rotational energy of spacetime (frame dragging) Thought experiment by Penrose that demonstrates the principle, probably not important in astrophysics But magnetized accretion disks is promising Penrose 1969 Ruffini & Wilson 1975; Blandford & Znajek 1977

Slide 113

Slide 113 text

Need a natural mechanism to accelerate particles from compact objects

Slide 114

Slide 114 text

How jets are formed large scale B + accretion + rotation Semenov+2004, Science magnetic flux tube ergosphere Requirements v ⊵ spinning black hole

Slide 115

Slide 115 text

How jets are formed large scale B + accretion + rotation Semenov+2004, Science Requirements P = B2 8⇡ AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E= AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E= AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E= AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E=

Slide 116

Slide 116 text

How jets are formed large scale B + accretion + rotation Semenov+2004, Science Requirements environment radiation GR Lense-Thirring precession Complications for theory Blandford-Znajek mechanism: Jet power rotation frequency magnetic flux ∝(ΦΩ)2 ∼ ( a M Φ BH) 2 ∼ a2 · Mc2 Jet

Slide 117

Slide 117 text

Kudos to Alice Harding (NASA GSFC) https://www.youtube.com/watch?v=R173dLIktsw How to make a black hole jet at home: Homopolar generator

Slide 118

Slide 118 text

Best way of producing relativistic jets Compact object accreting highly magnetized gas magnetized accretion flow Such conditions are natural outcomes of stellar deaths and easily produced around black holes

Slide 119

Slide 119 text

Basic facts about jets Highly magnetized β = P gas Pmag < 0.1 N m s T th r in la a in u ti s o U strong synchrotron radiation ν c ∼ γ2B MHz expect to see in radio

Slide 120

Slide 120 text

Basic facts about jets Highly magnetized β = P gas Pmag < 0.1 Relativistic Γ ∼ a few − 100 v > 0.9c AGNs GRBs bulk Lorentz factor

Slide 121

Slide 121 text

synchrotron emitting electron in the comoving frame of the plasma

Slide 122

Slide 122 text

shall Cohe discovered These are p that is, wh any misalig jets associa the emissio with the fa degrees or One does n less they ex radio sour v= 0.94c comoving frame ments of s shall Cohe discovered These are that is, wh any misali jets associa the emissio with the fa degrees or One does less they ex v= 0.5c ments of sm shall Cohe discovered These are p that is, wh any misalig jets associa the emissio with the fa degrees or One does n less they ex v= 0.75c shall Cohe discovered These are that is, wh any misali jets associa the emissio with the fa degrees or One does less they ex radio sour v= 0.98c observer’s frame

Slide 123

Slide 123 text

Basic facts about jets Highly magnetized β = P gas Pmag < 0.1 Relativistic Γ ∼ a few − 100 v > 0.9c Beamed: most radiated power along the propagation direction, skewed towards high frequency relativistic aberration Doppler shift

Slide 124

Slide 124 text

neutrinos, cosmic rays maybe show Feynman diagrams Basic facts about jets Collimated Highly magnetized β = P gas Pmag < 0.1 Relativistic Γ ∼ a few − 100 v > 0.9c Beamed: most radiated power along the propagation direction θ j < 10∘ collimation half-angle θ j

Slide 125

Slide 125 text

Blazars slides from my talk “jets and unified model”

Slide 126

Slide 126 text

Launching of Active Galactic Nuclei Jets 19 toward the polar regions as they move away from the BH. The group of field lines highlighted in green connects to the BH and makes up the twin polar jets. The jet field lines extract BH rotational energy and carry it away to large distances. These field lines have little to no gas attached to them and are therefore highly magnetized (since disk gas cannot cross magnetic field lines and is thus blocked from getting to the polar region, the jet field lines either drain the gas to the BH or fling the gas Fig. 9 [Panel (a)]: A 3D rendering of our MAD a = 0.99 model at t = 27,015rg /c (i.e., the same time as Fig. 8d). Dynamically-important magnetic fields are twisted by the rotation of a BH (too small to be seen in the image) at the center of an accretion disk. The azimuthal magnetic field component clearly dominates the jet structure. Density is shown with color: disk body is shown ith yellow and jets with cyan-blue color; we show jet magnetic field lines with cyan bands. The s approximately 300rg ⇥800rg . [Panel (b)]: Vertical slice through our MAD a = 0.99 e and azimuth over the period, 25,000rg /c  t  35,000rg /c. Ordered, fields remove the angular momentum from the accreting gas pinning BH (a = 0.99). Gray filled circle shows the s, and gray dashed lines indicate density of the time-average magnetic s is also seen from nd with Jet sim.: Tchekhovskoy The difference between blazars and radio galaxies is orientation Blazar Radio galaxy Radio galaxy Rad

Slide 127

Slide 127 text

Beyond orientation: Radio loud AGNs have different states of accretion flow FR I FR II Radio galaxy morphology BL Lac FSRQ flux flux ADAF thin disk Blazar spectral type Wavelength (A) Wavelength (A) Low power, weak lines High power, broad lines, UV bump Accretion mode torus disappears?

Slide 128

Slide 128 text

Synchrotron emission Inverse Compton Isotropic Radio Emission from Slowed Plasma in the Lobes E. Meyer+2011 log(⌫/Hz) log(⌫L⌫/erg s 1) dp" = Pdx" As a consequence, P is a scalar invariant. We therefor relativistic generalisation of equation (2.3)for which choice is 2e2 dp" dp,. P=--<--> dr dr where r denotes the proper time. Rewriting this eq (3 = v/ c, we obtain For synchrotron radiation, the particle energy is Equation(2.6)can be re-written in the convenient for 2 2 (B2) P = 2aTCf (31. 871" Synchrotron power: Opt. thin synchrotron Synchrotron self-absorption Blazars: observing beamed power of the relativistic jet

Slide 129

Slide 129 text

Blazar zoo: the “blazar sequence” Fossati+1998; Donato+2001 Ghisellini 11 Swift / BAT Fermi / LAT Integral FSRQs BL Lacs

Slide 130

Slide 130 text

Ghisellini 11 Swift / BAT Fermi / LAT Integral FSRQs BL Lacs Line strength ˙ M/ ˙ MEdd Blazar zoo: the “blazar sequence” Fossati+1998; Donato+2001

Slide 131

Slide 131 text

Ghisellini 11 Swift / BAT Fermi / LAT Integral FSRQs BL Lacs FR II FR I Continuous? Discontinuity Blazar zoo: the “blazar sequence” Fossati+1998; Donato+2001

Slide 132

Slide 132 text

Next Monday: Fabio Cafardo’s lecture on Fermi LAT observations

Slide 133

Slide 133 text

GRMHD simulation of a jetted AGN https://youtu.be/TdZdqfD0LTI

Slide 134

Slide 134 text

Observing the supermassive black hole M87* in virtual reality https://www.youtube.com/watch?v=bWg6vaf5WXw

Slide 135

Slide 135 text

EM radiation: radio, infrared, optical, X-rays, gamma-rays neutrinos, cosmic rays AGNs: Powerful EM radiators, particle accelerators

Slide 136

Slide 136 text

EM radiation: radio, infrared, optical, X-rays, gamma-rays neutrinos, cosmic rays Giant Magellan Telescope ELT LSST Cherenkov Telescope Array SKA IceCube Observatory AGNs: Powerful EM radiators, particle accelerators LISA GWs Athena

Slide 137

Slide 137 text

The future of AGN astrophysics is bright! You can be part of this! blackholegroup.org

Slide 138

Slide 138 text

Github Twitter Web E-mail Bitbucket Facebook Group figshare [email protected] rodrigonemmen.com @nemmen rsnemmen facebook.com/rodrigonemmen nemmen blackholegroup.org bit.ly/2fax2cT