Slide 56
Slide 56 text
࣮ݧ ඇѹॖੑྲྀΕ
ख๏
AAA2QniclVvZctxKcqXG25je7tiPfqkwpRjdMUmLupI9DzMTw1Wk2Nx3qnUVaCAbDRGbUNUgqZ72181P+Bf85vCrH5xVherMQoO6NiMkIs+pStRysjIbDQ7KNJHq1av/ePazP/nTP/vzv/j5Xy7+1V//zd/+3Xe/+PtLWYyrEC7CIi2q60EgIU1yuFCJSuG6rCDIBilcDe42NX9VQyWTIj9XjyV8zII4T4ZJGCiEPn33x34eDNJA9MOoUKIxypf9+mFZKPHPor8FqQqE+l78VvSHVRBO1qYTB06F3zuFofog+vVYrMw6WvSlQb2bNM1mPrNAjapscgrTtltq36+SeIRjsb8/NsP8/tN3S69WX5kfMX+x1lwsLTQ/x59+8WbYj4pwnEGuwjSQ8sPaq1J9nASVSsIUpov9sYQyCO+CGD7gZR5kID9OzHJPxQtEIjEsKvyXK2FQ3mMSZFI+ZgNsqScl25wGO7lB5t158qj9y9Zo1PDXHydJXo4V5KEdzHCcClUIvb8iSioIVfqIF0FYJTgfEY4CXGSFKvC8q+Tuq38/PSJVFKl/y0kdVPdJhGP20DKo5F1S+qBdIQ966MD0rVfCCMEc7sMiy4I8mvSjZDicfnj9cWJFEYkl1AX+/xoVIV4UVZTkQaUnNhxChTuXBKnvoGx56Jd6Q4PUOCID/fn9knzWUd9U/Iswd8WbJvmKjizxf7g5bgndnm6MzvidmU+HPu1ynCdq+mEN/QkXHh+W1j6a5dCcuE/USMgv46ACMcAZ34GSvotA2QHpIFzVw7Gh84dPk/lliCDF9W6BclyWZgw/Tl4urX3f7iPHA8N+cgPEpW41ucC1H2STizZ+afFLxF8IjwHLwPw+lVVB8/kNzmcZF7WZ0+/m/FwGlV2+ZmzaNj37E1qK/vz9t71e2919/GUeSNtHt/wDW+fp4uLiC/0jDrevxMH6+a7Y2t7ZO9w73zs6PBOGWuw6IJbxtwn/ZX0q4AgPgupOSIxtPLelKIYiDEp7rU+iClBDVZLH+iCIkjqRrtkwiccVtGSBoB7pdIKLnYmXPbye21psE6IqoXKtNo3V1c7M1TU7NWd0RytVlK7NeVF2tRgUShWZa7RhrLl2zbwD1yx4qsXAtRg81SJ0LcKnWkSuRaRb4Dbs4uxSPUMRCGyvD1oYYjhHAtcm833gtQaNMlDRQ2GCQ3vZMZtidw2PcVgWaXEP1UqIqXx1ESNxaJYVhktrE7uB/95Hy0ZXV3ccbqKCdFXsoBikwqNF773UO4a89bjjPO60PRpa3Rfunkuvm7tK4RoJnFFjvHY98OCJqMvSD0tv5rotz/q4qx+4qzdmOmdW1d9cDlS+HXwTAt56dDhwC2J7n7neZx29T10vk0Tvi1mUrc4Wxt5dmpWZxeATS9N2OKoA2i6Zv6Uf5j3SqjHfP8z7DnIBuAm6c8eSwRc7Z9fk6Ul7fvDAh0poP9bNduNmu8vNuqiCe1r3lrOVlZWgLpJIjKU+mpKhKAspEyxOresyDTB0Gv9Pj05XMCVGUsccNWO7N23+35NsHG3OHG3+pCOccx6DOYNtW2l9GHg2IpSKo52rlZUnZYKjC9K4wIptlHXMEzk7ulmjb06UuZqb6bpztd7hygne3Q8nMfP17cPg3Ou0/pOd5hZV10PNzJn6NGqHq6++tSm2f1u9x7P+x35/N9PZDXDU+vrJATeCgyTVYk31hU30+qrxN0yLojK0ubK8uWwarJnKZq5GUhUGQvMhKAzSyVa7QR2kScQbfJrVJ5aazrkEqbo7GGY6mxGUUue4UiZpkTf56RRdFJnAyj/BD1/g9A0qmGjPDyovqgy9Pu8j9HzqlrNq0QExA58ZEBP6TEhM5DMRMeAzQMzQZ4bExD4TEzPymRExic8kxHz2mc/E3PnMHTGpz6RTI+MqE4nEiMWP7dGjPuzsDi6Lz2OpRFTkv1RCfwBFOT7qk8fbGJE1vnPfd053LXymIKb0mZKYLz7zhZjKZypipM9IYpTPKGLGPjMmpvaZmph7n7kn5sFnHoh59JlHYr76zNepLfNcAGBmLmbHe90EycSG0mDIwmY2bjWyUeJaGJvxjOPwgGAWG3VIMAuMOiKYRUUNBLOQqIcEs3ioY4JZMNQjglkk1GOCWRjUnwlmMVDfEcwCoE4JThmcEZwxmC00X+GCYCbmuiSYKbn+QjCTcV0RzDRcS4Il31SCVfeacOnWBDPd1vcEM9HWDwQzxdaPBDO51l8JdlrdTkE/yDKf9qoO3YIVXee5DFZ5nSczWPl1ns1gNdh5OoMVYuf5DFaNnSc0WEl2ntFgddl5SiP35DkNVqGdJzVYmXae1WC12j6tHZf5XMa5J09isNLtPIvB6rfzNAYr4s7zGKySO09ksHLuPJPBarrzVAYr7M5zGay6O09msBLvPJvB6rzzdAYr9s7zGazinz6hMRaqJJxVKNk6xcc6hU22QfAGgzcJ3mTwFsFbDN4meJvBOwTvMPgdwe8YvEvwLoP3CN5j8HuC3zN4n+B9BvcI7jH4gOADBh8SfMjgI4KPGHxM8DGDTwg+YfApwacMPiP4jMHnBJ8z+ILgCwZfEnzJ4CuCrxh8TfA1g28IvmHwLcG3Tx+vvujAqo5pdJ3p10iPcRuc2/S5Tc5t+dwW57Z9bptzOz63w7l3PveOc7s+t8u5PZ/b49x7n3vPuX2f2+dcz+d6nDvwuQPOHfrcIeeOfO6Ic8c+d8y5E5874dypz51y7sznzjh37nPnnLvwuQvOXfrcJeeufO6Kc9c+d825G5+74dytzznZX/ISov4K5nMEfnZ9NetbFzlM3OdZh2VjC/UzShqzmljjfj1cNzBDBhahOsRUIYhQ9WFqD0So5qibkVClYeoMRKi+MNUFIlRVmJoCEaolTCWBCFUQpn5AhOoGUzUgQtWCqRUQSdk6WIQqA1MXIJKz9bMIVQGmBkCEcr/J/IhQxjf5HhHK8ybLIyLZgluEcnrdbAvblNoilL9N9kaEsrbJ2YhQrjaZGhHK0CY/I9JVjfplaB2k5Ujvt/k9U2A9aMRhdOFA+qhFTyYaKg2yQaR72AsiigxijZvfBBtJajk6AB0igv8TJJM4013Nb4KdcBvRziYymfDxT7RYnYViDclCoUZsUhP7pZa1UKBDslCcMVkozBFZOFw2VhTkZ7JQjHdsbSZahLOZT7QAnYWLyVYRxVewJZlo0TkLRfeFLBRcxVZqooU2W6CJFpmzcKHZMqPAarJQXPdkobAeyEJRPZKFgvo6bb7zwjz7YHGTY1FnlFtNZkWEMqrJp4hQHjVZFBHKniZ3DjKWM03GRIQypcmTiFB+NNkREcqKJiciQrnQZEJEKAOa/IcI5T2T9RChbGdyHSKU40yGQ4Qym8lriFA+M9kMEcpiJochQrnLZC5EKGOZfIUI5SmTpRCh7GRyk/2+1iGXE/dNrUOuLEL5x2QfRCjrmJyDCOUak2kQuWU7SHlhwNNCdjxqDuI+XrHVc6GvmV4T/rPJNTGsuTMbx0ZF55BL/YbGFoRpUAGKarSuTyC8oy325DDRj0ohD4soyWN0FoxTjcjh7DqbTqR+ynsG6ikHgyKNfsrN4GGKQdh+Ups33x6bvNn4M0+pm6kpW1/mkqlfbTiM9K82HUYRoLYcRjGgth1GUaB2HEZxoN45jCJB7TqMYkHtOYyiQb13GMWD2ncYRYTqOYxiQh04jKJCHTqM4kIdOYwiQx07jGJDnTiMokOdOoziQ505jCJEnTuMYkRdOIyiRF06jOJEXTmMIkVdO4xiRd04jKJF3TrMVmQo5HdVUI4sG7vPuaH3cSPeYDDpIt5kMEkj3mIwqSPeZjAJJN5hMGkkfsdgkkm8y2BSSrzHYBJL/J7BpJd4n8EkmbjHYFJNfMBgEk58yGDSTnzEYJJPfMxgUlB8wmASUXzKYNJRfMZgklJ8zmBSU3zBYBJUfMlg0lR8xWCSVXzNYFJWfMNgEld8y2BX8Z+Zt4c0LWdPUQZMXHKDUNKW3CSUpCW3CDXKeiG2zDcZYwkiEBKUwFunEIntZTGAMNC4GiVS3BfjNEIILRDSfO+BteS4EvqVuiJFR/p9F3gosbY0X+a6r9R36I6kTvmOUBKn3CWUtCn3CCVpyveEkjLlPqEkTNkjlHQpDwglWcpDQkmV8ohQEqU8JpQ0KU8IJUnKU0JJkfKMUBKkPCeU9CgvCCU5yktCSY3yilASo7wmlLQobwglKcpbQmePXHKs+8B8hAjsw5amCASqAHp+8a/Lw3WyUKobZKFEN8lCaW6RhYfdNlkooh2yUDzvyELR7JKFYtkjC0XyniwUxz5ZKIoeWSiGA7JQBIdk4eYfkYWbfkwWbvYJWbjJp2Th5p6RhZt6ThZu5gVZuImXZOHmXZGFm3ZNFm7WDVm4Sbfsfk2l1VRZesuAb5myFRceKTp+zVuyGMQWXTZvLRZjJbDcEfeY0kqo/IIIqCLyqqHm9mqmAdNwrhAEUy5Bq14CUzBBq2ICUzJBq2YCUzRBq2oCUzZBq24CUzhBq3ICUzpBq3YCUzxBq3oCUz5Bq34CU0BBq4ICU0JBq4YCU0RBq4oCU0ZBq44CU0hBq5ICU0pBq5YCU0xBq5oCU05Bq54CU1BBq6ICU1JBq6YCU1RBq6oCU1ZBq64CU1hBq7ICU1pBq7YCU1xBq7oCU15Bq74CU2ABq7DwkwKmHFWNQYzzCKr0Ub+0FAUqEDHkUGG20XYiUemDsU497dePsel0Un6a9KtsYgyT+LRXyMqkSkLzui/1n707OHg06c68BqJvgvmx5du9ITIKFH5S92/htTzmLY+nXYPJigjSb03ENJjNxFpz92kaHX+rUamSNIKmZd8Ys9HPeuAxoYpwFEj9snowVoX5BAWVN8LWC6ylbTMbY9NlfgAReO2s2dGuQgIPHdfOmqiF0DxD8xunQZkGIdAfLfQaYCpeiObaX97F1vvFs4y33R5IT7KXdnpt9nTKc3vr1MxKtsYtMq2m7rmbT1QQT2dP0tpUqGiO2kqGCVRt17IYqix4oJYOaLfDZFGYl5jsQ7Z5L2U61rP/qp8E+Ox+b8rfYNrvzW2gfrfbe9G77V/hr6DCva8K1vJsbgM2i5pobWiBXhXpsAoy/UBqdF9UWKDK4FGK570fXz/Xb++YPwYZ5/YtVFni/kvz9tjzPqQpa+MeiL4QG5gAMeRz/d8jxjtk+i02XQVbp6y1foW0GMcmZ5qiOFGwbNzLQkQFaHf3yV1SQpQEq61XkIsqS/XD++mk9+OraQdZ5KC5tS5O3Zt+r7u4UjNlB2O00Puxn+RD9dgOnTLQf+mAu3wc6GA5AzxrZRCDSHKRF01Br+BhVWyOCqmXp9AFYDgSW/jZN4dfSjEoirvVRe9xzlGpT+ei+hVqvIrNAPB3f1lffauhPidtQ7zqdmnUis3M/0+0OEdBnes3/FJQ/WCAcZYW94MKgrtP3y2ttf8Oaf7i8vXq2r+uvjl5s/T7jeZvlH6+8I8L/7TwcmFt4d8Wfr+wu3C8cLEQPvvVs+NnN89u3/7x7X++/a+3/22b/uxZ0+cfFryft//zv3Rq7Ro=
r · rp(x, t + t) =
1
t
r ·
u t
✓
u · ru
1
Re
r · ru
◆
(x, t)
AAA1yXiclVvZctxKcuWMtzG93bEf/VJhSjH32iQt6kq2H2zHcBUpNvdVUusq0EA2GiI2oapBUj3tF3+Rv8bhN/tPnFWFQmahQV2bERKR51QlajlZmY0GR2WaSPXixX/94pe/9/t/8Id/9Ks/Xv6TP/2zP/+L7379l9eymFYhXIVFWlS3o0BCmuRwpRKVwm1ZQZCNUrgZ3W1r/qaGSiZFfqkeS/iYBXGejJMwUAh9+u5wWE+/H9YPq0KJvxPDHUhVINQP4l8EET+INTHMg1EaiLKvrbv69N3Ki/UX5kcsXmw0FytLzc/pp1+/Gg+jIpxmkKswDaT8sPGiVB9nQaWSMIX58nAqoQzCuyCGD3iZBxnIjzMz67l4jkgkxkWF/3IlDMp7zIJMysdshC2zQE1kl9NgLzfKvDvPHrV/2RmNGv/Tx1mSl1MFeWgHM56mQhVCL7OIkgpClT7iRRBWCc5HhJOgCkKFm+F5V8ndV/9+ekSqKFL/lrM6qO6TCMfsoWVQybuk9EG7Qh700IPpW6+FEYI53IdFlgV5NBtGyXg8//Dy42w4xvHOIrGyMdf/v5zPhXheVFGSB5We2HgMFe5cEqS+g7LjYVjqDQ1S44gM9Of3S/K2o76p+Hth7oo3TfI1LXDxf7g5bgndnm6MzvidmU+HPu1ymidq/mED/Ymh3psqm31Y2fholkNz4j5REyG/TIMKxAhnfAdK+i4CZQeUwlit6+EMqySeqN99mi0uQwQprncHlNOyNGP4afb9ysYP3T5yOjLsJzdAXOpOkytc+1E2u+ri1xa/Rvy58BiwDCzuU1kVNJ9/xvms4qI2c/rXBT/XQWWXrxmbtk3P4YyWYrh4/12v125/H3+ZR9L20S1/x9Z5vry8/Fz/iOPdG3G0ebkvdnb3Do4PLg9Oji+EoZb7DohV/G3Cf1WfCjjCo6C6ExJjG49PKYqxCIPSXuuTqALUUJXksT4IoqROpGs2TuJpBR1ZIKhHOp/hYmfi+wFeL2wttglRlVC5VtvG6mtn5uqanWujr5UqStfmsij7WowKpYrMNdoy1kK7Zt6BaxY81WLkWoyeahG6FuFTLSLXItItcBv2cXapnqEIBLbXBy2MMZwjgWuT+T7wWoNGGajosTDBob3smU2xu4bHOKyKtLiHai3EjLq+jJE4NssK45WNmd3AfxuiZaOrrzsON1FBui72UAxS4dGi917qHUPeetxzHve6Hg2t7gt3z5WXzV2lcI0EzqgxXroeePBE1GXlx5VXC91W2z7u6kfu6pWZzoVV9TeXA5VvB9+EgLcePQ7cgtjeF673RU/vc9fLJNH7oo2y9XZh7N2lWZk2Bp9Ymq7DSQXQdcn8rfy46JFWjfn+cdF3kAvATdCde5YMvtg5uyZPT9rzgwc+VEL7sW52Gze7fW42RRXc07p3nK2trQV1kURiKvXRlIxFWUiZYI1oXZdpgKHT+H96dLqCKTGSeuaoGdu9afP/nmTjaLt1tP2zjnDOeQzmDLZtpfVh4HZEKBVHO1dra0/KBEcXpHGBFdsk65kncnZ0baNvTpS5WpjppnO12ePKCd7dDyfR+vr2YXDpddr82U4Li6rroWbmTH0atcPVV9/aFNu/q97Ttv+p39/NtL0BjlpfPzngRnCQpFqsqb6wiV5fNf7GaVFUhjZXljeXTYMNU9ks1EiqwkCY25IjDNLZTrdBHaRJxBt8ausTS80XXIJU/R0MM29nBKXUOa6USVrkTX46RxdFJrDyT/DjFzh9gwpm2vODyosqQ6/Phgg9m7vlrDp0QMzIZ0bEhD4TEhP5TEQM+AwQM/aZMTGxz8TETHxmQkziMwkxn33mMzF3PnNHTOoz6dzIuMpEIjFi8dNz9KgPO7uDq+LzVCoRFflvlNAfQFGOj/rk8TZGZI3v3Ped010LnymIKX2mJOaLz3whpvKZihjpM5IY5TOKmKnPTImpfaYm5t5n7ol58JkHYh595pGYrz7zdW7LPBcAmJmL9nivmyCZ2VAajVnYtONWExslroWxGc84Do8IZrFRhwSzwKgjgllU1EAwC4l6TDCLhzommAVDPSGYRUI9JZiFQf2ZYBYD9R3BLADqlOCUwRnBGYPZQvMVLghmYq5LgpmS6y8EMxnXFcFMw7UkWPJNJVj1rwmXbk0w0219TzATbf1AMFNs/Ugwk2v9lWCn1d0U9IMs82mv6tEtWNH1nstgldd7MoOVX+/ZDFaDvaczWCH2ns9g1dh7QoOVZO8ZDVaXvac0ck+e02AV2ntSg5Vp71kNVqvd09pxmc9lnHvyJAYr3d6zGKx+e09jsCLuPY/BKrn3RAYr594zGayme09lsMLuPZfBqrv3ZAYr8d6zGazOe09nsGLvPZ/BKv7pExpjoUrCtkLJNik+Nilssi2Ctxi8TfA2g3cI3mHwLsG7DN4jeI/Bbwh+w+B9gvcZfEDwAYPfEvyWwYcEHzJ4QPCAwUcEHzH4mOBjBp8QfMLgU4JPGXxG8BmDzwk+Z/AFwRcMviT4ksFXBF8x+JrgawbfEHzD4FuCbxn8juB3DH5P8Punj1dfdGBVxzS6yfRrpMe4Lc5t+9w253Z8bodzuz63y7k9n9vj3Bufe8O5fZ/b59yBzx1w7q3PveXcoc8dcm7gcwPOHfncEeeOfe6Ycyc+d8K5U5875dyZz51x7tznzjl34XMXnLv0uUvOXfncFeeufe6aczc+d8O5W5+75dw7n3vHufc+52R/zUuI+iuYzxH42fVF27cucpi5z7MOy6YWGmaUNNqaWON+PVw3MENGFqE6xFQhiFD1YWoPRKjmqJuRUKVh6gxEqL4w1QUiVFWYmgIRqiVMJYEIVRCmfkCE6gZTNSBC1YKpFRBJ2TpYhCoDUxcgkrP1swhVAaYGQIRyv8n8iFDGN/keEcrzJssjItmCW4Ryet1sC9uU2iKUv032RoSytsnZiFCuNpkaEcrQJj8j0leN+mVoHaTlRO+3+d0qsB414jC6cCB91KInEw2VBtko0j3sBRFFBrHGzW+CjSS1HB2ADhHB/wmSSZzpruY3wU64jWjbicxmfPwzLVZnoVhDslCoEZvUzH6pZS0U6JgsFGdMFgpzQhYOl40VBfmZLBTjHVubmRZhO/OZFqCzcDHZKqL4CrYkMy06Z6HovpCFgqvYSs200NoFmmmROQsXmi0zCqwmC8V1TxYK64EsFNUjWSior/PmOy/Msw8WNzkWdUa51WRWRCijmnyKCOVRk0URoexpcucoYznTZExEKFOaPIkI5UeTHRGhrGhyIiKUC00mRIQyoMl/iFDeM1kPEcp2JtchQjnOZDhEKLOZvIYI5TOTzRChLGZyGCKUu0zmQoQylslXiFCeMlkKEcpOJjfZ72sdcj1z39Q65MYilH9M9kGEso7JOYhQrjGZBpH3bAcpL4x4WshOJ81BPMQrtnou9DUzaMK/nVwTw5q7sHFsVHQJudRvaOxAmAYVoKgmm/oEwjvaYk+OE/2oFPKwiJI8RmfBNNWIHLfX2Xwm9VPeC1BPORgVafRzbkYPcwzC7pPavPn22OTNxp95St1MTdn6MpdM/WrLYaR/te0wigC14zCKAbXrMIoCtecwigP1xmEUCWrfYRQL6sBhFA3qrcMoHtShwygi1MBhFBPqyGEUFerYYRQX6sRhFBnq1GEUG+rMYRQd6txhFB/qwmEUIerSYRQj6sphFCXq2mEUJ+rGYRQp6tZhFCvqncMoWtR7h9mKDIX8pgrKiWVj9zk39D5uxFsMJl3E2wwmacQ7DCZ1xLsMJoHEewwmjcRvGEwyifcZTEqJDxhMYonfMpj0Eh8ymCQTDxhMqomPGEzCiY8ZTNqJTxhM8olPGUwKis8YTCKKzxlMOoovGExSii8ZTGqKrxhMgoqvGUyaim8YTLKKbxlMyorfMZjEFb9nsKv4L8zbQ5qW7VOUEROX3CKUtCW3CSVpyR1CjbKeix3zTcZUggiEBCXw1ilEYndVjCAMNK4miRT3xTSNEEILhDTfe2AtOa2EfqWuSNGRft8FHkqsLc2Xue4r9T26I6lTviGUxCn3CSVtygNCSZryLaGkTHlIKAlTDgglXcojQkmW8phQUqU8IZREKU8JJU3KM0JJkvKcUFKkvCCUBCkvCSU9yitCSY7ymlBSo7whlMQobwklLcp3hJIU5XtC20cuOdZ9YD5CBPZhS1MEAlUAA7/41+XhJlko1S2yUKLbZKE0d8jCw26XLBTRHlkonjdkoWj2yUKxHJCFInlLForjkCwUxYAsFMMRWSiCY7Jw80/Iwk0/JQs3+4ws3ORzsnBzL8jCTb0kCzfziizcxGuycPNuyMJNuyULN+sdWbhJ79n9mkqrqbL0lgHfMmUrLjxSdPyat2QxiC26at5aLKZKYLkj7jGllVD5BRFQReRVQ83tVasB03ChEARTLkGnXgJTMEGnYgJTMkGnZgJTNEGnagJTNkGnbgJTOEGncgJTOkGndgJTPEGnegJTPkGnfgJTQEGnggJTQkGnhgJTREGnigJTRkGnjgJTSEGnkgJTSkGnlgJTTEGnmgJTTkGnngJTUEGnogJTUkGnpgJTVEGnqgJTVkGnrgJTWEGnsgJTWkGntgJTXEGnugJTXkGnvgJTYAGrsPCTAqYcVU1BTPMIqvRRv7QUBSoQMeRQYbbRdiJR6aOpTj3d14+x6XxWfpoNq2xmDJP4tFfIyqRKQvO6L/Vv3x0cPZp0Z14D0TfB/Njx7d4QmQQKP6n7t/BanvKWp/O+wWRFBOm3JmIatDOx1sJ9mkan32pUqiSNoGk5NEY7+rYHHhOqCCeB1C+rB1NVmE9QUHkj7LzAWto27RibLosDiMBrZ82edhUSeOi4dtZELYTmGZrfOA3KNAhh3r5RM2iAuXgummt/eZc77xe3GW+3O5CBZC/tDLrs+Zzn9s6pmZVsjTtkWs3dczefqCCet0/SulSoaI7aSsYJVF3XshirLHiglg7otsNkUZiXmOxDtkUvZTrVs/+qnwT47OFgzt9gOhwsbKB+t9t70bvrX+GvoMK9rwrW8mJhA7aLmmhtaIHeFOm4CjL9QGpyX1RYoMrgUYpng59ePtNv75g/Bpnm9i1UWeL+S/P22LMhpClr4x6IPhdbmAAx5HP93yPGO2T6LTZdBVunrLV+hbSYxiZnmqI4UbBq3MtCRAVod/fJXVJClATrnVeQiypL9cP7+Wzw04t5D1nkoLmNPk7dm34v+7hSM2UPY7Qw+GmY5GP12A2dMtB/6YC7fBroYLkAPGtlEINIcpEXTUGv4GFdbE8KqZen0AVgOBE7+Nk3h99IMSqKu/Vl73HOSalP56L6W9R4FZsB4O/hqr76VkN9TtqGeNXv0qgVm5n/n2hxiYK61G/4paCGwQjjLC3uRxUEd5++W9no/h3S4sX1y/WNf1h/dfZq5bdbzd8o/Wrpr5f+Zun7pY2lf1z67dL+0unS1VK49B9L/7n030v/8/rw9ZfXD6+/2qa//EXT56+WvJ/X//6/PnS/fA==
u(x, t + t) = u(x, t) rp(x, t + t) t
ϝογϡͰۭؒΛࢄԽ*TP($/ͰۭؒඍΛۙࣅ
AAA17niclVvbctxIcuXsetdr+Ta7fvRL2ZRiZ2ySFjWS7QfbsbyTYvMi3iW1RoFGZ6Mh4iZUNUgK2/4Mvzn86i9yhP/FD86qQiGz0KDGZoRE5DlVibqcrMxGg6MiiaV6/vy/v/nZz//gF7/8w1/90ZM//pM//bM///bXv7mS+awM4TLMk7y8GQUSkjiDSxWrBG6KEoJ0lMD16HZL89cVlDLOswv1UMCHNIiyeBKHgULo47fFsJp9N6zuV4QSfyuG25CoQKjvxT8LIr4Xq2KYBmpapvWBzPe2jucf6+diqHKxPhfDvxLDBCbqvSj6HA3LOJqqDy3y8dvl52vPzY9YvFhvLpaXmp/Tj79+ORmO83CWQqbCJJDy/frzQn2og1LFYQLzJ8OZhCIIb4MI3uNlFqQgP9RmaebiGSJjMclL/JcpYVDeow5SKR/SEbbUM5RdToO93Cj17lw/aP+yMxo1+ccPdZwVMwVZaAczmSUCF07vhRjHJYQqecCLICxjnI8Ip0EZhAp3zPOu4tsv/v30iFSeJ/4t6yoo7+IxjtlDi6CUt3Hhg3aFPOi+B9O3Xg3HCGZwF+ZpGmTjejiOJ5P5+xcf6uEEx1uPxfL6XP//Yj4X4llejuMsKPXEJhMocefiIPEdFB0Pw0JvaJAYR2SgP79fnLUd9U3F3wlzV7xpnK3qKBD/h5vjltDt6cbojN+Z+XTo4y5nWazm79fRXxsr75fXP5jl0Jy4i9VUyM+zoAQxwhnfgpK+i0DZAeloWtPDsbHz+4/14jKMIcH17oByVhRmDD/W3y2vf9/tI2cjw350A8Sl7jS5xLUfpfVlF7+y+BXiz4THgGVgcZ+KMqf5/BPOZwUXtZnTvyz4uQpKu3zN2LRteg5rWorh4v13vF47/X38ZR5J20e3/D1b5/mTJ0+e6R9xvHMtjjYu9sX2zu7B8cHFwcnxuTDUk74DYgV/m/Bf0acCjvAoKG+FxNjGM1aKfCLCoLDX+iQqATVUxlmkD4JxXMXSNZvE0ayEjiwQ1COd17jYqfhugNcLW4ttQlQllK7VlrH62pm5umZn2uhrpfLCtbnIi74Wo1ypPHWNNo210K6Zd+CaBY+1GLkWo8dahK5F+FiLsWsx1i1wG/ZxdomeoQgEttcHLUwwnMcC1yb1feC1Bo0yUNETYYJDe9k1m2J3DY9xWBFJfgflaohpd+0JRuLELCtMltdru4H/OkTLRldfdxxurIJkTeyiGKTCo0XvvdQ7hrz1uOs87nY9Glrd5e6eyy+au0rhGgmcUWO8cD3w4BlTl+Ufll8udFtp+7irH7irl2Y651bVX10OVL4dfBMC3nr0OHALYnufu97nPb3PXC+TRO/yNsrW2oWxd5dmZdoYfGRpug6nJUDXJfO3/MOiR1o15vuHRd9BJgA3QXfuWTL4bOfsmjw+ac8PHvhQCu3Hutlp3Oz0udkQZXBH695xtrq6GlR5PBYzqY+meCKKXMoYC0nrukgCDJ3G/+Oj0xVMgZHUM0fN2O5Nm//3JBtHW62jrZ90hHPOIjBnsG0rrQ8DtyNCqTjauVpdfVQmOLogiXKs2KZpzzyRs6NrG311oszVwkw3nKuNHldO8O5+OInW19cPgwuv08ZPdlpYVF0PNTNn6tOoHa6++tqm2P5d9Z62/U/9/m6m7Q1w1Pr60QE3goM40WJN9IVN9Pqq8TdJ8rw0tLmyvLlsGqybymahRlIlBsLclhxhkNTb3QZVkMRj3uBjW59Yar7gEqTq72CYeTsjKKTOcYWMkzxr8tMZushTgZV/HGC0On2DCmrt+V5leZmi16dDhJ7O3XKWHTogZuQzI2JCnwmJGfvMmBjwGSBm4jMTYiKfiYiZ+syUmNhnYmI++cwnYm595paYxGeSuZFxmYpYYsTiR+zxgz7s7A6uiE8zqcQ4z36rhP4AinJ80CePtzEibXxnvu+M7pr7TE5M4TMFMZ995jMxpc+UxEifkcQon1HEzHxmRkzlMxUxdz5zR8y9z9wT8+AzD8R88Zkvc1vmuQDAzJy3x3vVBEltQ2k0YWHTjltNbZS4FsZmPOM4PCKYxUYVEswCoxoTzKKiAoJZSFQTglk8VBHBLBiqKcEsEqoZwSwMqk8EsxiobglmAVAlBCcMTglOGcwWmq9wTjATc1UQzJRcfSaYybgqCWYariTBkm8qwap/Tbh0K4KZbqs7gploq3uCmWKrB4KZXKsvBDut7iSgH2SZT3tlj27Biq73XAarvN6TGaz8es9msBrsPZ3BCrH3fAarxt4TGqwke89osLrsPaWRe/ScBqvQ3pMarEx7z2qwWu2e1o5LfS7l3KMnMVjp9p7FYPXbexqDFXHveQxWyb0nMlg5957JYDXdeyqDFXbvuQxW3b0nM1iJ957NYHXeezqDFXvv+QxW8Y+f0BgLZRy2FUq6QfGxQWGTbhK8yeAtgrcYvE3wNoN3CN5h8C7BuwzeI3iPwfsE7zP4gOADBr8m+DWDDwk+ZPCA4AGDjwg+YvAxwccMPiH4hMGnBJ8y+A3Bbxh8RvAZg88JPmfwBcEXDL4k+JLBVwRfMfia4GsG3xB8w+C3BL9l8DuC3z1+vPqiA6s6ptENpl8jPcZtcm7L57Y4t+1z25zb8bkdzu363C7n9nxuj3P7PrfPuQOfO+Dca597zblDnzvk3MDnBpw78rkjzh373DHnTnzuhHOnPnfKuTc+94ZzZz53xrlznzvn3IXPXXDu0ucuOXflc1ecu/a5a87d+NwN59763FvOvfM5J/srXkJUX8B8jsDPrs/bvlWeQe0+zzosnVlomFLSaGtijfv1cNXADBlZhOoQU4UgQtWHqT0QoZqjakZClYapMxCh+sJUF4hQVWFqCkSoljCVBCJUQZj6ARGqG0zVgAhVC6ZWQCRh62ARqgxMXYBIxtbPIlQFmBoAEcr9JvMjQhnf5HtEKM+bLI+IZAtuEcrpVbMtbFMqi1D+NtkbEcraJmcjQrnaZGpEKEOb/IxIXzXql6FVkBRTvd/md6vAatSIw+jCgfRRi55MNFQSpKOx7mEviMhTiDRufhNsJKnl6AB0iAj+T5CMo1R3Nb8JdsJtRNtOpK75+GstVmehWEOyUKhjNqnafqllLRTohCwUZ0QWCnNKFg6XjRUF+YksFOMtW5tai7Cdea0F6CxcTLaKKL6cLUmtRecsFN1nslBwJVupWgutXaBai8xZuNBsmVFgFVkorjuyUFj3ZKGoHshCQX2ZN995YZ69t7jJsagzyq0msyJCGdXkU0Qoj5osighlT5M7RynLmSZjIkKZ0uRJRCg/muyICGVFkxMRoVxoMiEilAFN/kOE8p7JeohQtjO5DhHKcSbDIUKZzeQ1RCifmWyGCGUxk8MQodxlMhcilLFMvkKE8pTJUohQdjK5yX5f65Cr2n1T65Bri1D+MdkHEco6JucgQrnGZBpE3rEdpLww4mkhPZ02B/EQr9jqudDXzKAJ/3ZyTQxr7tzGsVHRBWRSv6GxDWESlICimm7oEwjvaIs9OYn1o1LIwnwcZxE6C2aJRuSkvU7ntdRPec9BPeZglCfjn3Izup9jEHaf1GbNt8cmbzb+zFPqZmrK1peZZOpXmw4j/asth1EEqG2HUQyoHYdRFKhdh1EcqD2HUSSofYdRLKgDh1E0qNcOo3hQhw6jiFADh1FMqCOHUVSoY4dRXKgTh1FkqFOHUWyoNw6j6FBnDqP4UOcOowhRFw6jGFGXDqMoUVcOozhR1w6jSFE3DqNYUW8dRtGi3jnMVmQo5L0yKKaWjdzn3ND7uBFtMph0EW0xmKQRbTOY1BHtMJgEEu0ymDQS7TGYZBLtM5iUEh0wmMQSvWYw6SU6ZDBJJhowmFQTHTGYhBMdM5i0E50wmOQTnTKYFBS9YTCJKDpjMOkoOmcwSSm6YDCpKbpkMAkqumIwaSq6ZjDJKrphMCkrestgElf0jsGu4j83bw9pWrZPUUZMXHKTUNKW3CKUpCW3CTXKeia2zTcZMwkiEBKUwFsnMBY7K2IEYaBxNY2luMtnyRghtEBI870H1pKzUuhX6vIEHen3XeC+wNrSfJnrvlLfpTuSOuUeoSROuU8oaVMeEErSlK8JJWXKQ0JJmHJAKOlSHhFKspTHhJIq5QmhJEp5SihpUr4hlCQpzwglRcpzQkmQ8oJQ0qO8JJTkKK8IJTXKa0JJjPKGUNKifEsoSVG+I7R95JJh3QfmI0RgH7Y0RSBQBTDwi39dHm6QhVLdJAslukUWSnObLDzsdshCEe2SheLZIwtFs08WiuWALBTJa7JQHIdkoSgGZKEYjshCERyThZt/QhZu+ilZuNlvyMJNPiMLN/ecLNzUC7JwMy/Jwk28Igs375os3LQbsnCz3pKFm/SO3a+ptJoqS28Z8C1TtuLCI0XHr3lLFoPYoivmrcV8pgSWO+IOU1oBpV8QAVVEXjXU3F61GjANFwpBMOUSdOolMAUTdComMCUTdGomMEUTdKomMGUTdOomMIUTdConMKUTdGonMMUTdKonMOUTdOonMAUUdCooMCUUdGooMEUUdKooMGUUdOooMIUUdCopMKUUdGopMMUUdKopMOUUdOopMAUVdCoqMCUVdGoqMEUVdKoqMGUVdOoqMIUVdCorMKUVdGorMMUVdKorMOUVdOorMAUWsAoLPylgylHlDMQsG0OZPOiXlsaBCkQEGZSYbbQdS1T6aKZTT/f1Y2w6r4uP9bBMa2OYxKe9QlrEZRya132pf/vu4OjBpDvzGoi+CebHjm/3hsg0UPhJ3b+F1/KUtzyd9w0mzceQfG0ipkE7E2st3KdpdPq1RoWKkzE0LYfGaEff9sBjQuXhNJD6ZfVgpnLzCQpKb4SdF1gL26YdY9NlcQBj8NpZs6ddiQQeOq6dNVELoXmG5jdOgiIJQpi3b9QMGmAunonm2l/eJ533i9uMt9MdyECyl3YGXfZsznN759RMC7bGHTIp5+65m0+UEM3bJ2ldKlQ0R23FkxjKrmuZT1Qa3FNLB3TbYbLIzUtM9iHbopcimenZf9FPAnz2cDDnbzAdDhY2UL/b7b3o3fWv8FdQ4t6XOWt5vrABW3lFtDa0QK/zZFIGqX4gNb3LSyxQZfAgxdPBjy+e6rd3zB+DzDL7FqoscP+leXvs6RCShLVxD0SfiU1MgBjymf7vAeMdUv0Wm66CrVPWWr9Cms8ikzNNURwrWDHuZS7GOWh3d/FtXMA4DtY6ryDnZZroh/fzevDj83kPmWegufU+Tt2Zfi/6uEIzRQ9jtDD4cRhnE/XQDZ0i0H/pgLt8GuhgOQc8a2UQgYgzkeVNQa/gfk1sTXOplyfXBWA4Fdv42TeD30oxyvPbtSfe45yTQp/Oefk3qPEyMgPA38MVffW1hvqctA3xqt+lUSs2M/8/0uICBXWh3/BLQA2DEcZZkt+NSghuP367vN79O6TFi6sXa+t/v/byzcvl3202f6P0q6W/XPrrpe+W1pf+Yel3S/tLp0uXS+HSfy39zze/+OaXr4pX//bq31/9h236s2+aPn+x5P28+s//BUbEy8M=
u(x, t + t) = u(x, t) IsoGCN0!1[p(x, t + t)] t
Solve : IsoGCN1!0 IsoGCN0!1[p(x, t + t)]
GCN1!2[u]
1
Re
IsoGCN1!0 IsoGCN0!1[u]
◆
Solve : IsoGCN1!0 IsoGCN0!1[p(x, t + t)]
oGCN1!2[u]
1
Re
IsoGCN1!0 IsoGCN0!1[u]
◆
AAA2+3iclVvbctxIcuXIa3uXvs3sPvqlbEqxGpuiRY5CdmysN5Z3UmxexLuk1jDQ6Gw0RNyEqgZJ9bR/xm8Ov/pj/OwfcVYVCpmFBjU2IyQiz6lK1OVkZTYaHBRJLNXLl//9zZM/+cWf/tmf//JXi3/xl3/113/z7Xe/vpT5pAzhIsyTvLweBBKSOIMLFasErosSgnSQwNXgdlPzVxWUMs6zc/VQwMc0iLJ4FIeBQujmu29+6qeBGpfp9CxPKvhdX8yEQ/Zlvrt5NLuZroq+ysVLZMK4DOf5l4ZfRf7vRD+BkfpQPO9X98tCiX8U/S1IVCDU9/0yjsbq42K/v/ivoj8qg3C6Ops6+qu3dW5Fv5qIF41Liz43aD8c5uoxH2ttH/VYtK9mIHXXU5h1jGWtmWL3EvzMfezv751dr873N98uvVx5aX7E/MVqfbG0UP+c3Hz3atQf5uEkhUyFSSDlh9WXhfo4DUoVhwnMFvsTCUUQ3gYRfMDLLEhBfpwanczEM0SGYpSX+C9TwqC8xzRIpXxIB9hSz0+2OQ12coPUu/P0QfuXrdGo0b98nMZZMVGQhXYwo0kicNm0MMUwLiFUyQNeBGEZ43xEOA5wcxTK1/Ou4tsv/v30iFSeJ/4tp1VQ3sVDHLOHFkEpb+PCB+0KedB9B6Zv/SIcIpjBXZinaZANp/1hPBrNPqx9nFoxDcUS6gn/X0MliWd5OYyzoNQTG42gxJ2Lg8R3ULQ89Au9oUFiHJGB/vx+cdZ01DcV/yTMXfGmcfZCHwni/3Bz3BK6Pd0YnfE7M58OfdzlJIvV7MMq+msi5cPS6kezHJoTd7EaC/l5EpQgBjjjW1DSdxEoOyAdSyt6ODZ0frqZzi/DEBJc7xYoJ0VhxvDj9PnS6vftPnIyMOyNGyAudavJBa79IJ1etPFLi18i/kx4DFgG5vepKHOaz+9xPsu4qPWc/jDn5zIo7fLVY9O26dmf0lL05++/7fXa7u7jL/NA2j665U9snWeLi4vP9I842r4Sh+vne2Jre2f/aP98//joTBhqseuAWMbfJvyX9amAIzwMylshMbYx4UiRj0QYFPZan0QloIbKOIv0QTCMq1i6ZqM4mpTQkgWCeqSzKS52Kp738Hpua7FNiKqE0rXaNFZXOzNX1+zUnNEdrVReuDbnedHVYpArlaeu0Yax5trV8w5cs+CxFgPXYvBYi9C1CB9rMXQthroFbsMezi7RMxSBwPb6oIURhvNQ4Nqkvg+81qBRBip6JExwaC87ZlPsruExDssiye+gfBFiDbKyiJE4MssKo6XVqd3Af+ujZaOrqzsON1ZBsiJ2UAxS4dGi917qHUPeetxxHnfaHg2t7nJ3z6W1+q5SuEYCZ1Qba64HHjxD6rL0w9KruW7LTR939QN39cpM58yq+qvLgcq3g69DwFuPDgduQWzvM9f7rKP3qetlkuhd3kTZSrMw9u7SrEwTg48sTdvhuARou2T+ln6Y90irxnz/MO87yATgJujOHUsGn+2cXZPHJ+35wQMfSqH9WDfbtZvtLjfrogzuaN1bzl68eBFUeTwUE6mPpngkilzKGKtq67pIAgyd2v/jo9MVTIGR1DFHzdjudZv/9yRrR5uNo82fdYRzziIwZ7BtK60PAzcjQqk42rl68eJRmeDogiTKsWIbpx3zRM6Ormn01YkyV3MzXXeu1jtcOcG7++EkGl9fPwzOvU7rP9tpblF1PVTPnKlPo3a4+uprm2L7t9V70vQ/8fu7mTY3wFHr60cHXAsO4kSLNdEXNtHrq9rfKMnz0tDmyvLmsm6waiqbuRpJlRgI9YenMEimW+0GVZDEQ97gpqlPLDWbcwlSdXcwzKyZERRS57hCxkme1fnpFF3kqcDKPw4wWp2+QQVT7fleZXmZotenfYSeztxyli06IGbgMwNiQp8JiRn6zJAY8BkgZuQzI2Iin4mIGfvMmJjYZ2JiPvnMJ2JufeaWmMRnkpmRcZmKWGLElhAMH/RhZ3dwWXyaSCWGefZbJfQHUJTjgz55vI0Rae07831ndNfcZ3JiCp8piPnsM5+JKX2mJEb6jCRG+YwiZuIzE2Iqn6mIufOZO2LufeaemAefeSDmi898mdkyzwUAZua8Od6rOkimNpQGIxY2zbjV2EaJa2FsxjOOwwOCWWxUIcEsMKohwSwqKiCYhUQ1IpjFQxURzIKhGhPMIqGaEMzCoPpEMIuB6pZgFgBVQnDC4JTglMFsofkK5wQzMVcFwUzJ1WeCmYyrkmCm4UoSLPmmEqy614RLtyKY6ba6I5iJtronmCm2eiCYybX6QrDT6nYC+kGW+bRXdugWrOg6z2Wwyus8mcHKr/NsBqvBztMZrBA7z2ewauw8ocFKsvOMBqvLzlMauUfPabAK7Typwcq086wGq9X2ae241OdSzj16EoOVbudZDFa/nacxWBF3nsdgldx5IoOVc+eZDFbTnacyWGF3nstg1d15MoOVeOfZDFbnnaczWLF3ns9gFf/4CY2xUMZhU6Gk6xQf6xQ26QbBGwzeJHiTwVsEbzF4m+BtBu8QvMPgXYJ3GbxH8B6D9wneZ/Abgt8w+IDgAwb3CO4x+JDgQwYfEXzE4GOCjxl8QvAJg98S/JbBpwSfMviM4DMGnxN8zuALgi8YfEnwJYOvCL5i8DXB1wx+R/A7Br8n+P3jx6svOrCqYxpdZ/o10mPcBuc2fW6Tc1s+t8W5bZ/b5tyOz+1wbtfndjm353N7nNv3uX3OvfG5N5w78LkDzvV8rse5Q5875NyRzx1x7tjnjjl34nMnnHvrc285d+pzp5w787kzzp373DnnLnzugnOXPnfJuSufu+Lctc9dc+6dz73j3Hufc7K/5CVE9QXM5wj87Pqy6VvlGUzd51mHpRML9VNKGk1NrHG/Hq5qmCEDi1AdYqoQRKj6MLUHIlRzVPVIqNIwdQYiVF+Y6gIRqipMTYEI1RKmkkCEKghTPyBCdYOpGhChasHUCogkbB0sQpWBqQsQydj6WYSqAFMDIEK532R+RCjjm3yPCOV5k+URkWzBLUI5vaq3hW1KZRHK3yZ7I0JZ2+RsRChXm0yNCGVok58R6apG/TK0CpJirPfb/G4UWA1qcRhdOJA+atGTiZpKgnQw1D3sBRF5CpHGzW+CjSS1HB2ADhHB/wmScZTqruY3wU64tWibiUynfPxTLVZnoVhDslCoQzapqf1Sy1oo0BFZKM6ILBTmmCwcLhsrCvITWSjGW7Y2Uy3CZuZTLUBn4WKyVUTx5WxJplp0zkLRfSYLBVeylZpqoTULNNUicxYuNFtmFFhFForrjiwU1j1ZKKoHslBQX2b1d16YZ+8tbnIs6oxyq8msiFBGNfkUEcqjJosiQtnT5M5BynKmyZiIUKY0eRIRyo8mOyJCWdHkREQoF5pMiAhlQJP/EKG8Z7IeIpTtTK5DhHKcyXCIUGYzeQ0RymcmmyFCWczkMEQod5nMhQhlLJOvEKE8ZbIUIpSdTG6y39c65HLqvql1yJVFKP+Y7IMIZR2TcxChXGMyDSLv2Q5SXhjwtJCejOuDuI9XbPVc6GumV4d/M7k6hjV3ZuPYqOgcMqnf0NiCMAlKQFGN1/UJhHe0xZ4cxfpRKWRhPoyzCJ0Fk0QjctRcp7Op1E95z0A95mCQJ8OfczO4n2EQtp/UZvW3xyZv1v7MU+p6asrWl5lk6lcbDiP9q02HUQSoLYdRDKhth1EUqB2HURyoXYdRJKg9h1EsqH2HUTSoNw6jeFAHDqOIUD2HUUyoQ4dRVKgjh1FcqGOHUWSoE4dRbKi3DqPoUKcOo/hQZw6jCFHnDqMYURcOoyhRlw6jOFFXDqNIUdcOo1hR7xxG0aLeO8xWZCjk3TIoxpaN3Ofc0Pu4EW0wmHQRbTKYpBFtMZjUEW0zmAQS7TCYNBLtMphkEu0xmJQS7TOYxBK9YTDpJTpgMEkm6jGYVBMdMpiEEx0xmLQTHTOY5BOdMJgUFL1lMIkoOmUw6Sg6YzBJKTpnMKkpumAwCSq6ZDBpKrpiMMkqumYwKSt6x2ASV/Sewa7iPzNvD2laNk9RBkxccoNQ0pbcJJSkJbcINcp6JrbMNxkTCSIQEpTAWycwFNvLYgBhoHE1jqW4yyfJECG0QEjzvQfWkpNS6Ffq8gQd6fdd4L7A2tJ8meu+Ut+hO5I65S6hJE65RyhpU+4TStKUbwglZcoDQkmYskco6VIeEkqylEeEkirlMaEkSnlCKGlSviWUJClPCSVFyjNCSZDynFDSo7wglOQoLwklNcorQkmM8ppQ0qJ8RyhJUb4ntHnkkmHdB+YjRGAfttRFIFAF0POLf10erpOFUt0gCyW6SRZKc4ssPOy2yUIR7ZCF4tklC0WzRxaKZZ8sFMkbslAcB2ShKHpkoRgOyUIRHJGFm39MFm76CVm42W/Jwk0+JQs394ws3NRzsnAzL8jCTbwkCzfviizctGuycLPekYWb9J7dr6606ipLbxnwLVO24sIjRceveUsWg9iiy+atxXyiBJY74g5TWgGlXxABVUReNVTfXjUaMA3nCkEw5RK06iUwBRO0KiYwJRO0aiYwRRO0qiYwZRO06iYwhRO0KicwpRO0aicwxRO0qicw5RO06icwBRS0KigwJRS0aigwRRS0qigwZRS06igwhRS0KikwpRS0aikwxRS0qikw5RS06ikwBRW0KiowJRW0aiowRRW0qiowZRW06iowhRW0KiswpRW0aiswxRW0qisw5RW06iswBRawCgs/KWDKUeUExCQbQpk86JeWhoEKRAQZlJhttB1LVPpgolNP+/VjbDqbFjfTfplOjWESn/YKaRGXcWhe96X+zbuDgweT7sxrIPommB9bvt0bIuNA4Sd1/xZeyxPe8mTWNZg0H0LytYmYBs1MrDV3n7rRydcaFSpOhlC37BujGX3TA48JlYfjQOqX1YOJys0nKCi9EbZeYC1sm2aMdZf5AQzBa2fNjnYlEnjouHbWRC2E5hma3zgJiiQIgf7YoVcDM/FM1Nf+8i623i9uMt52eyA9yV7a6bXZ0xnP7a1TMy3YGrfIpJy5524+UUI0a56ktalQ0Ry1FY9iKNuuZT5SaXBPLR3QbofJIjcvMdmHbPNeimSiZ/9FPwnw2YPejL/BdNCb20D9brf3onfbv8JfQYl7X+as5dncBmzmFdHa0AK9ypNRGaT6gdT4Li+xQJXBgxRPez+uPdVv75g/Bplk9i1UWeD+S/P22NM+JAlr4x6IPhMbmAAx5DP93wPGO6T6LTZdBVunrLV+hTSfRCZnmqI4VrBs3MtcDHPQ7u7i27iAYRystF5Bzss00Q/vZ9Pejy9nHWSegeZWuzh1Z/qtdXGFZooOxmih92M/zkbqoR06RaD/0gF3+STQwXIGeNbKIAIRZyLL64Jewf2K2BznUi9PrgvAcCy28LNvBr+VYpDntyuL3uOc40Kfznn5D6jxMjIDwN/9ZX31tYb6nLQN8arbpVErNjP/P9LiHAV1rt/wS0D1gwHGWZLfDUoIbm++XVpt/x3S/MXl2srq65VXb18t/XGj/hulXy787cLfLzxfWF3454U/LuwtnCxcLITf/M+TXz359ZPfvJ69/vfX//H6P23TJ9/UfX6z4P28/q//BfUeK68=
Solve : IsoGCN1!0 IsoGCN0!1[p(x, t + t)]
=
1
t
IsoGCN1!0
u t
✓
u · IsoGCN1!2[u]
1
Re
IsoGCN2!1 IsoGCN1!2[u]
◆
(x, t)
AAA3MniclVvZctzIcuXoermmt5nrN/ulwpTmamySFiWF7AfbMdxJsbmIu6SWFGh0NhoiNqGqQVK47Z+yf8Z+c/jVH+GsKlRnFhrU+DJCIvKcqkQtJyuz0eCgSGKpnj37z+8e/eoP/vCP/vjXf7L4p3/253/xl9//8JtLmU/KEC7CPMnL60EgIYkzuFCxSuC6KCFIBwlcDW42NX9VQSnjPDtX9wV8SIMoi0dxGCiEPv3w3b/3j1OIAvFjX04GEpTop4EaDwb16fTjC/Gj+HGx31/sF8N4NKr71WRaq6n48V/EiniKluiHwxy7ZMEgCX4SGvl70R+VQVivTWvjqUzrU5hOmzZeB9N+xRkF3sz1iDPsoG0zNjMCrzv2wzE8+3aPaoJDvFsWSmDTn3QHhD5Rh1hNdYOffslLu+fWlPXIXY8iKFUcJE1X1lh7eeqGn6s4Band6dXKjOtBWj/7fVweTT99v/Rs9Zn5EfMXa83F0kLzc/Lph5ej/jAPJylkKkwCKd+vPSvUh1rfIEwAxziRUAThTRDBe7zMAhzlh9rIayqeIDIUo7zEf5kSBuU96iCV8j4dYEs9RNnmNNjJDVLvzvW99i9bo1Gjf/qAG1NMFGShHcxokgiVC61nMYxLCFVyjxdBWMY4HxGOA1SgQtV73lV889W/nx6RyvPEv2VdBeVtPMQxeyjuhryJCx+0K+RBdx2YvvVKOEQwg9swT9MgG9Z9HVPT988/1DZihmIJgwb/f47hIp7k5TDOglJPbDSCEncOteA7KFoeZorRjshAf36/OJt11DcV/yDMXfGmcbaiTxLx/7g5bgndnm6MzvidmU+HPuxyomPy/Rr6mwXD+6W1D2Y5NCduYzUW8sskKEEMcMY3oKTvIlB2QAmM1KoeTr+Mo7H63ad6fhmGkOB6t0A5KQozho/106W1n9p98JA07CwacalbTS5w7TGmL9r4pcUvEX8iPAYsA/P7VJQ5zeefcT7LuKjNnP51zs9lUNrla8ambdOzX9NS9Ofvv+312u7u4y/zQNo+uuXv2DpPFxcXn+gfcbR9JQ7Xz/fE1vbO/tH++f7x0Zkw1GLXAbGMv034L+tTAUd4GJQ3QmJsY56SIh+JMCjstT6JSkANlXEW6YNgGFexdM1GcTQpoSULBPVIpzUudiqe9vB6bmuxTYiqhNK12jRWVzszV9fsVBtdrVReuDbnedHVYpArlaeu0Yax5to18w5cs+ChFgPXYvBQi9C1CB9qMXQthroFbsMezi7RMxSBwPb6oIURhvNQ4Nqkvg+81qBRBip6JExwaC87ZlPsruExDssiyW+hXAmxdFldxEgcmWWF0dJabTfw3/po2ejq6o7DjVWQrIodFINUeLTovZd6x5C3Hnecx522R0Or29zdc+l5c1dMzU0jgTNqjOeuBx48Q+qy9GLp5Vy35Vkfd/WCu3pppnNmVf3N5UDl28E3IeCtR4cDtyC295nrfdbR+9T1Mkn0Np9F2epsYezdpVmZWQw+sDRth+MSoO2S+Vt6Me+RVo35fjHvO8gE4Cbozh1LBl/snF2Thyft+cEDH0qh/Vg3242b7S4366IMbmndW85WVlaCKo+HYiL10RSPRJFLGWMxbl0XSYCh0/h/eHS6gikwkjrmqBnbvWnze0+ycbQ5c7T5i45wzlkE5gy2baX1YeDZiFAqjnauVlYelAmOLkiiHCu2cdoxT+Ts6GaNvjlR5mpupuvO1XqHKyd4dz+cxMzXtw+Dc6/T+i92mltUXQ81M2fq06gdrr761qbY/m31nsz6n/j93UxnN8BR6+sHB9wIDuJEizXRFzbR66vG3yjJ89LQ5sry5rJpsGYqm7kaSZUYCM0nxDBI8GNSq0EVJPGQN/g0q08sNZ1zCVJ1dzDMdDYjKKTOcYWME/yoZfPTKbrIU4GVf4wf1MDpG1RQa893KsvLFL0+7iP0eOqWs2zRATEDnxkQE/pMSMzQZ4bEgM8AMSOfGRET+UxEzNhnxsTEPhMT89lnPhNz4zM3xCQ+k0yNjMtUxBIjtoRgeK8PO7uDy+LzRCoxzLPfKqE/gKIc7/XJ422MSBvfme87o7vmPpMTU/hMQcwXn/lCTOkzJTHSZyQxymcUMROfmRBT+UxFzK3P3BJz5zN3xNz7zD0xX33m69SWeS4AMDPns+O9aoKktqE0GLGwmY1bjW2UuBbGZjzjODwgmMVGFRLMAqMaEsyiogKCWUhUI4JZPFQRwSwYqjHBLBKqCcEsDKrPBLMYqG4IZgFQJQQnDE4JThnMFpqvcE4wE3NVEMyUXH0hmMm4KglmGq4kwZJvKsGqe024dCuCmW6rW4KZaKs7gpliq3uCmVyrrwQ7rW4noB9kmU97ZYduwYqu81wGq7zOkxms/DrPZrAa7DydwQqx83wGq8bOExqsJDvPaLC67DylkXvwnAar0M6TGqxMO89qsFptn9aOS30u5dyDJzFY6XaexWD123kagxVx53kMVsmdJzJYOXeeyWA13XkqgxV257kMVt2dJzNYiXeezWB13nk6gxV75/kMVvEPn9AYC2UcziqUdJ3iY53CJt0geIPBmwRvMniL4C0GbxO8zeAdgncYvEvwLoP3CN5j8D7B+wx+TfBrBh8QfMDgHsE9Bh8SfMjgI4KPGHxM8DGDTwg+YfAbgt8w+JTgUwafEXzG4HOCzxl8QfAFgy8JvmTwFcFXDL4m+JrBbwl+y+B3BL97+Hj1RQdWdUyj60y/RnqM2+Dcps9tcm7L57Y4t+1z25zb8bkdzu363C7n9nxuj3P7PrfPudc+95pzBz53wLmez/U4d+hzh5w78rkjzh373DHnTnzuhHNvfO4N50597pRzZz53xrlznzvn3IXPXXDu0ucuOXflc1ecu/a5a8699bm3nHvnc072l7yEqL6C+Rxhvptzfas8g9p9nnVYOrFQP6WkMauJNe7Xw1UDM2RgEapDTBWCCFUfpvZAhGqOqhkJVRqmzkCE6gtTXSBCVYWpKRChWsJUEohQBWHqB0SobjBVAyJULZhaAZGErYNFqDIwdQEiGVs/i1AVYGoARCj3m8yPCGV8k+8RoTxvsjwiki24RSinV822sE2pLEL522RvRChrm5yNCOVqk6kRoQxt8jMiXdWoX4ZWQVKM9X6b3zMFVoNGHEYXDqSPWvRkoqGSIB0MdQ97QUSuvxdG3Pwm2EhSy9EB6BAR/J8gGUep7mp+E+yE24h2NpG65uOvtVidhWINyUKhDtmkavullrVQoCOyUJwRWSjMMVk4XDZWFORnslCMN2xtai3C2cxrLUBn4WKyVUTx5WxJai06Z6HovpCFgivZStVaaLMFqrXInIULzZYZBVaRheK6JQuFdUcWiuqeLBTU12nznRfm2TuLmxyLOqPcajIrIpRRTT5FhPKoyaKDlGVPkzsHKcuZJmMiQpnS5ElEKD+a7IgIZUWTExGhXGgyISKUAU3+Q4Tynsl6iFC2M7kOEcpxJsMNUpbZTF5DhPKZyWaIUBYzOQwRyl0mcyFCGcvkK0QoT5kshQhlJ5Ob7Pe1Drms3Te1DrmyCOUfk30Qoaxjcg4ilGtMpkHkHdtBygsDnhbSk3FzEPfxiq2eC33N9Jrwn02uiWHNndk4Nio6h0zqNzS2IEyCElBU43V9AuEdbbEnR7F+VApZmA/jLEJnwSTRiBzNrtNpLfVT3jNQDzkY5Mnwl9wM7qYYhO0ntVnz7bHJm40/85S6mZqy9WUmmfrVhsNI/2rTYRQBasthFANq22EUBWrHYRQHatdhFAlqz2EUC2rfYRQN6rXDKB7UgcMoIlTPYRQT6tBhFBXqyGEUF+rYYRQZ6sRhFBvqjcMoOtSpwyg+1JnDKELUucMoRtSFwyhK1KXDKE7UlcMoUtS1wyhW1FuHUbSodw6zFRkKebcMirFlI/c5N/Q+bkQbDCZdRJsMJmlEWwwmdUTbDCaBRDsMJo1EuwwmmUR7DCalRPsMJrFErxlMeokOGEySiXoMJtVEhwwm4URHDCbtRMcMJvlEJwwmBUVvGEwiik4ZTDqKzhhMUorOGUxqii4YTIKKLhlMmoquGEyyiq4ZTMqK3jKYxBW9Y7Cr+M/M20OalrOnKAMmLrlBKGlLbhJK0pJbhBplPRFb5puMiQQRCP1iJd46gaHYXhYDCAONq3EsxW0+SYYIoQVCmu89sJaclEK/Upcn6Ei/7wJ3BdaW5stc95X6Dt2R1Cl3CSVxyj1CSZtyn1CSpnxNKClTHhBKwpQ9QkmX8pBQkqU8IpRUKY8JJVHKE0JJk/INoSRJeUooKVKeEUqClOeEkh7lBaEkR3lJKKlRXhFKYpTXhJIW5VtCSYryHaGzRy4Z1n1gPkIE9mFLUwQCVQA9v/jX5eE6WSjVDbJQoptkoTS3yMLDbpssFNEOWSieXbJQNHtkoVj2yUKRvCYLxXFAFoqiRxaK4ZAsFMERWbj5x2Thpp+QhZv9hizc5FOycHPPyMJNPScLN/OCLNzES7Jw867Iwk27Jgs36y1ZuEnv2P2aSqupsvSWAd8yZSsuPFJ0/Jq3ZDGILbps3lrMJ0q/6StuMaUVUPoFEVBF5FVDze3VTAOm4VwhCKZcgla9BKZgglbFBKZkglbNBKZoglbVBKZsglbdBKZwglblBKZ0glbtBKZ4glb1BKZ8glb9BKaAglYFBaaEglYNBaaIglYVBaaMglYdBaaQglYlBaaUglYtBaaYglY1BaacglY9BaagglZFBaakglZNBaaoglZVBaasglZdBaawglZlBaa0glZtBaa4glZ1Baa8glZ9BabAAlZh4ScFTDmqnICYZEMok3v90tIwUIGIIIMSs422Y4lKH0x06mm/foxNp3Xxqe6XaW0Mk/i0V0iLuIxD87ov9Z+9Ozi4N+nOvAaib4L5seXbvSEyDhR+Uvdv4bU84S1Ppl2DSfMhJN+aiGkwm4m15u7TNDr5VqNCxckQmpZ9Y8xGP+uBx4TKw3Eg9cvqwUTl5hMUlN4IWy+wFrbNbIxNl/kBDMFrZ82OdiUSeOi4dtZELYTmGZrfOAmKJAiB/qKj1wBT8UQ01/7yLrbeL55lvO32QHqSvbTTa7OnU57bW6dmWrA1bpFJOXXP3XyihGg6e5LWpkJFc9RWPIqhbLuW+UilwR21dEC7HSaL3LzEZB+yzXspkome/Vf9JMBnD3pT/gbTQW9uA/W73d6L3m3/Cn8FJe59mbOWZ3MbsJlXRGtDC/QqT0ZlkOoHUuPbvMQCVQb3UjzufXz+WL+9Y/4YZJLZt1Blgfsvzdtjj/uQJKyNeyD6RGxgAsSQz/R/9xjvkOq32HQVbJ2y1voV0nwSmZxpiuJYwbJxL3MxzEG7u41v4gKGcbDaegU5L9NEP7yf1r2Pz6YdZJ6B5ta6OHVr+j3v4grNFB2M0ULvYz/ORuq+HTpFoP/SAXf5JNDBcgZ41sogAhFnIsubgl7B3arYHOdSL0+uC8BwLLbws28Gv5VikOc3q4ve45zjQp/Oefl3qPEyMgPA3/1lffWthvqctA3xqtulUSs2M/8/0OIcBXWu3/BLQPWDAcZZkt8OSghuPn2/tNb+O6T5i8vnq2uvVl++ebn080bzN0q/Xvibhb9deLqwtvCPCz8v7C2cLFwshI/++tHPj/YfvX71H6/+69V/v/of2/TRd02fv1rwfl797/8BKSo75g==
⌦ ⇢ R3
@u
@t
= (u · r)u +
1
Re
r · ru rp in ⌦
r · u = 0 in ⌦
u(x, t = 0) = uinit(x) in ⌦
u = uD on @⌦D
(r ⌦ u)n = 0 on @⌦N
AAA3Y3iclVvZctxKcuWVtzHHy71jvzkcUWFKdySbpEVJMfKD7RiuIsXmvkpqSYFGZ6MhYhOqGiSFaf+n3+3/cFYVqjMLDep6GCERdU5WopaTldlocFAksVTPn//3D4/+5E//7M//4ld/ufjrv/rrv/nbH3/6zaXMJ2UIF2Ge5OX1IJCQxBlcqFglcF2UEKSDBK4GN5uav6qglHGenav7Aj6mQZTFozgMFEKff/rhf/pHKUSB+LkvJwMJSvTTQI0Hg/p0+uml+Fn8vNjvL/aLYTwa1f1qMq3VVPz8H2JFPMWW6IfDHLtkwSAJngmN/Ivoj8ogrNemtfFUpvUpTKeNjdfB2K+4RoE3cz3iDDvothmbGYHXHfvhGJ5/v0c1wSHeLQsl0PSZ7oDQZ+oQq6k2ePZLXto9t6asR+56FEGp4iBpujJj48UtyQu0TmCknrr55CpOQTYr14E++3Qu+mUcjZVe3syMZZDWz/+YMRxOP/+49Hz1ufkR8xdrzcXSQvNz/PmnV6P+MA8nKWQqTAIpP6w9L9THWt8gTAAnNZFQBOFNEMEHvMwCHO/H2uhxKp4gMhSjvMR/mRIG5T3qIJXyPh2gpR6ibHMa7OQGqXfn+l77l63RqNG/fcSdLCYKstAOZjRJhMqFDgAxjEsIVXKPF0FYxjgfEY4D3B+FYeJ5V/HNN/9+ekQqzxP/lnUVlLfxEMfsobgb8iYufNCukAfddWD61ivhEMEMbsM8TYNsWPd1EE4/vPhYWz0NxRJKCv9/gfElnuTlMM6CUk9sNIISdw614DsoWh5mitGOqIH+/H5xNuuobyr+VZi74k3jbEUfPeL/cXPcEro93Rid8Tsznw592OVEB/GHNfQ3C4YPS2sfzXJoTtzGaizk10lQghjgjG9ASd9FoOyAdFSu6uHYaPvD53p+GYaQ4Hq3QDkpCjOGT/XTpbVn7T54qhp2Fo241C2TC1x7jOmLNn5p8UvEnwiPAcvA/D4VZU7z+XeczzIuajOn/5zzcxmUdvmasem26dmvaSn68/ff9nptd/fxl3kgbR9t+Qe2ztPFxcUn+kccbl+Jg/XzXbG1vbN3uHe+d3R4Jgy12HVALONvE/7L+lTAER4E5Y2QGNuY2KTIRyIMCnutT6ISUENlnEX6IBjGVSyd2SiOJiW0ZIGgHum0xsVOxdMeXs9tLdqEqEoondWmaXXZmbk6s1NznHdYqbxwNud50WUxyJXKU2e0YVpzds28A2cWPGQxcBaDhyxCZxE+ZDF0FkNtgduwi7NL9AxFINBeH7QwwnAeClyb1PeB1xo0ykBFj4QJDu1lx2yK3TU8xmFZJPktlCsh1jqrixiJI7OsMFpaq+0G/lcfWza6urrjcGMVJKtiB8UgFR4teu+l3jHkrccd53Gn7dHQ6jZ391x60dwVk3RjJHBGTeOF64EHz5C6LL1cejXXbXnWx1295K5ememcWVV/dzlQ+XbwTQh469HhwC2I7X3mep919D51vUwSvc1nUbY6Wxh7d2lWZhaDDyxN2+G4BGi7ZP6WXs57pFVjvl/O+w4yAbgJunPHksFXO2dn8vCkPT944EMptB/rZrtxs93lZl2UwS2te8vZyspKUOXxUEykPprikShyKWOs3q3rIgkwdBr/D49OVzAFRlLHHDVjuzc2f/QkG0ebM0ebv+gI55xFYM5gayutDwPPRoRScbRztbLyoExwdEES5VixjdOOeSJnRzcz+u5Emau5ma47V+sdrpzg3f1wEjNf3z8Mzr1O67/YaW5RdT3UzJypT6N2uPrqe5ti+7fVezzrf+z3dzOd3QBHra8fHHAjOIgTLdZEX9hEr68af6Mkz0tDmyvLm8vGYM1UNnM1kioxEJqPlGGQ4OeqlkEVJPGQG3ye1SeWms65BKm6OxhmOpsRFFLnuELGCX7UsvnpFF3kqcDKP8aPbOD0DSqotec7leVlil4f9xF6PHXLWbbogJiBzwyICX0mJGboM0NiwGeAmJHPjIiJfCYiZuwzY2Jin4mJ+eIzX4i58ZkbYhKfSaZGxmUqYokRW0IwvNeHnd3BZfFlIpUY5tlvldAfQFGO9/rk8TZGpI3vzPed0V1zn8mJKXymIOarz3wlpvSZkhjpM5IY5TOKmInPTIipfKYi5tZnbom585k7Yu595p6Ybz7zbWrLPBcAmJnz2fFeNUFS21AajFjYzMatxjZKnIVpM55xHB4QzGKjCglmgVENCWZRUQHBLCSqEcEsHqqIYBYM1ZhgFgnVhGAWBtUXglkMVDcEswCoEoITBqcEpwxmC81XOCeYibkqCGZKrr4SzGRclQQzDVeSYMk3lWDVvSZcuhXBTLfVLcFMtNUdwUyx1T3BTK7VN4KdVrcT0A+yzKe9skO3YEXXeS6DVV7nyQxWfp1nM1gNdp7OYIXYeT6DVWPnCQ1Wkp1nNFhddp7SyD14ToNVaOdJDVamnWc1WK22T2vHpT6Xcu7BkxisdDvPYrD67TyNwYq48zwGq+TOExmsnDvPZLCa7jyVwQq781wGq+7OkxmsxDvPZrA67zydwYq983wGq/iHT2iMhTIOZxVKuk7xsU5hk24QvMHgTYI3GbxF8BaDtwneZvAOwTsMfkPwGwbvErzL4D2C9xj8luC3DN4neJ/BPYJ7DD4g+IDBhwQfMviI4CMGHxN8zOATgk8YfErwKYPPCD5j8DnB5wy+IPiCwZcEXzL4iuArBl8TfM3gdwS/Y/B7gt8/fLz6ogOrOqbRdaZfIz3GbXBu0+c2Obflc1uc2/a5bc7t+NwO59743BvO7frcLuf2fG6Pc2997i3n9n1un3M9n+tx7sDnDjh36HOHnDvyuSPOHfvcMedOfO6Ec6c+d8q5M58749y5z51z7sLnLjh36XOXnLvyuSvOXfvcNefe+dw7zr33OSf7S15CVN/AfI4w3825vlWeQe0+zzosnVion1LSmNXEGvfr4aqBGTKwCNUhpgpBhKoPU3sgQjVH1YyEKg1TZyBC9YWpLhChqsLUFIhQLWEqCUSogjD1AyJUN5iqARGqFkytgEjC1sEiVBmYugCRjK2fRagKMDUAIpT7TeZHhDK+yfeIUJ43WR4RyRbcIpTTq2Zb2KZUFqH8bbI3IpS1Tc5GhHK1ydSIUIY2+RmRrmrUL0OrICnGer/N75kCq0EjDqMLB9JHLXoy0VBJkA6Guoe9ICLX3wsjbn4TbCSp5egAdIgI/k+QjKNUdzW/CXbCbUQ7m0hd8/HXWqyuhWINqYVCHbJJ1fZLLdtCgY6oheKMqIXCHFMLh8vGioL8Qi0U4w1bm1qLcDbzWgvQtXAx2Sqi+HK2JLUWnWuh6L5SCwVXspWqtdBmC1RrkbkWLjRbZhRYRS0U1y21UFh31EJR3VMLBfVt2nznhXn2zuImx6LOKLeazIoIZVSTTxGhPGqy6CBl2dPkzkHKcqbJmIhQpjR5EhHKjyY7IkJZ0eRERCgXmkyICGVAk/8Qobxnsh4ilO1MrkOEcpzJcIOUZTaT1xChfGayGSKUxUwOQ4Ryl8lciFDGMvkKEcpTJkshQtnJ5Cb7fa1DLmv3Ta1DrixC+cdkH0Qo65icgwjlGpNpEHnPdpDywoCnhfR43BzEfbxiq+dCXzO9Jvxnk2tiWHNnNo6Nis4hk/oNjS0Ik6AEFNV4XZ9AeEdb7MlRrB+VQhbmwziL0FkwSTQiR7PrdFpL/ZT3DNRDDgZ5MvwlN4O7KQZh+0lt1nx7bPJm4888pW6mpmx9mUmmfrXhMNK/2nQYRYDachjFgNp2GEWB2nEYxYF64zCKBLXrMIoFtecwigb11mEUD2rfYRQRqucwigl14DCKCnXoMIoLdeQwigx17DCKDXXiMIoOdeowig915jCKEHXuMIoRdeEwihJ16TCKE3XlMIoUde0wihX1zmEULeq9w2xFhkJ+UwbF2LKR+5wbeh83og0Gky6iTQaTNKItBpM6om0Gk0CiHQaTRqI3DCaZRLsMJqVEewwmsURvGUx6ifYZTJKJegwm1UQHDCbhRIcMJu1ERwwm+UTHDCYFRScMJhFFpwwmHUVnDCYpRecMJjVFFwwmQUWXDCZNRVcMJllF1wwmZUXvGEziit4z2FX8Z+btIU3L2VOUAROX3CCUtCU3CSVpyS1CjbKeiC3zTcZEggiEfhMTb53AUGwviwGEgcbVOJbiNp8kQ4SwBUKa7z2wlpyUQr9SlyfoSL/vAncF1pbmy1z3lfoO3ZHUKd8QSuKUu4SSNuUeoSRN+ZZQUqbcJ5SEKXuEki7lAaEkS3lIKKlSHhFKopTHhJIm5QmhJEl5SigpUp4RSoKU54SSHuUFoSRHeUkoqVFeEUpilNeEkhblO0JJivI9obNHLhnWfWA+QgT2YUtTBAJVAD2/+Nfl4Tq1UKob1EKJblILpblFLTzstqmFItqhFornDbVQNLvUQrHsUQtF8pZaKI59aqEoetRCMRxQC0VwSC3c/CNq4aYfUws3+4RauMmn1MLNPaMWbuo5tXAzL6iFm3hJLdy8K2rhpl1TCzfrHbVwk96z+zWVVlNl6S0DvmXKVlx4pOj4NW/JYhBbdNm8tZhPlH7TV9xiSiug9AsioIrIq4aa26uZBozhXCEIplyCVr0EpmCCVsUEpmSCVs0EpmiCVtUEpmyCVt0EpnCCVuUEpnSCVu0EpniCVvUEpnyCVv0EpoCCVgUFpoSCVg0FpoiCVhUFpoyCVh0FppCCViUFppSCVi0FppiCVjUFppyCVj0FpqCCVkUFpqSCVk0FpqiCVlUFpqyCVl0FprCCVmUFprSCVm0FpriCVnUFpryCVn0FpsACVmHhJwVMOaqcgJhkQyiTe/3S0jBQgYgggxKzjW7HEpU+mOjU0379GE2ndfG57pdpbRom8WmvkBZxGYfmdV/qP3t3cHBv0p15DUTfBPNjy7d7Q2QcKPyk7t/CszzmlsfTrsGk+RCS703EGMxmYltz92mMjr9nVKg4GUJj2TeN2ehnPfCYUHk4DqR+WT2YqNx8goLSG2HrBdbC2szG2HSZH8AQPDvb7LArkcBDx9nZJmohNM/QfOMkKJIgBPoTkF4DTMUT0Vz7y7vYer94lvG22wPpSfbSTq/Nnk55bm+dmmnB1rhFJuXUPXfziRKi6exJWpsKFc1Rt+JRDGXbtcxHKg3uyNIBbTtMFrl5ick+ZJv3UiQTPftv+kmAz+73pvwNpv3e3Abqd7u9F73b/hX+Ckrc+zJnlmdzG7CZV0TrhhboVZ6MyiDVD6TGt3mJBaoM7qV43Pv04rF+e8f8Mcgks2+hygL3X5q3xx73IUmYjXsg+kRsYALEkM/0f/cY75Dqt9h0FWydMmv9Cmk+iUzONEVxrGDZuJe5GOag3d3GN3EBwzhYbb2CnJdpoh/eT+vep+fTDjLPQHNrXZy6Nf1edHGFZooOxmih96kfZyN13w6dItB/6YC7fBzoYDkDPGtlEIGIM5HlTUGv4G5VbI5zqZcn1wVgOBZb+Nk3g99KMcjzm9VF73HOUaFP57z8Z9R4GZkB4O/+sr76nqE+J60hXnW7NGpFM/P/AxbnKKhz/YZfAqofDDDOkvx2UEJw8/nHpbX23yHNX1y+WF373eqrk1dLv99o/kbpVwv/sPBPC08X1hZeL/x+YXfheOFiIXy0/+jro2+P6t/97+tfv/7N67+3po9+aPr83YL38/of/w/mSEsc
⌦ ⇢ R3
@u
@t
= (u · r)u +
1
Re
r · ru
r · u = 0
u(x, t = 0) = uinit(x)
u = uD
1
2
r ⌦ u + (r ⌦ u)T n = 0
'SBDUJPOBMTUFQ๏ʹΑΔӄղ๏Ͱ࣌ؒΛࢄԽ