Slide 1

Slide 1 text

Gabriel Peyré www.numerical-tours.com L’échantillonnage compressé É C O L E N O R M A L E S U P É R I E U R E

Slide 2

Slide 2 text

Echantillonner puis compresser 0,1,0,. . . Lena Lena.bmp Lena.jpg

Slide 3

Slide 3 text

Echantillonner puis compresser 0,1,0,. . . Lena Lena.bmp Lena.jpg

Slide 4

Slide 4 text

Echantillonner puis compresser 0,1,0,. . . Lena Lena.bmp Lena.jpg

Slide 5

Slide 5 text

Appareil photo à pixel unique •  Digital Micromirror Device (DMD) by Texas Instruments http://dsp.rice.edu/cscamera

Slide 6

Slide 6 text

Appareil photo à pixel unique •  Digital Micromirror Device (DMD) by Texas Instruments http://dsp.rice.edu/cscamera

Slide 7

Slide 7 text

Modèle mathématique de l’acquisition

Slide 8

Slide 8 text

Modèle mathématique de l’acquisition

Slide 9

Slide 9 text

Modèle mathématique de l’acquisition

Slide 10

Slide 10 text

Modèle mathématique de l’acquisition

Slide 11

Slide 11 text

Système linéaire

Slide 12

Slide 12 text

Système linéaire

Slide 13

Slide 13 text

Système linéaire

Slide 14

Slide 14 text

Compressibilité et reconstruction Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video)

Slide 15

Slide 15 text

Compressibilité et reconstruction Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video)

Slide 16

Slide 16 text

La théorie de Candès et al. mplication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients his principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video)

Slide 17

Slide 17 text

La théorie de Candès et al. mplication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients his principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video) Implication of sparsity: image “compression” 1 Compute 1,000,000 wavelet coe cients of mega-pixel image 2 Set to zero all but the 25,000 largest coe cients 3 Invert the wavelet transform original image after zeroing out smallest coe cients This principle underlies modern lossy coders (sound, still-picture, video)

Slide 18

Slide 18 text

Problèmes Inverses

Slide 19

Slide 19 text

Problèmes Inverses

Slide 20

Slide 20 text

Conclusion Claude Shannon, p` ere fondateur de la th´ eorie de l’information.

Slide 21

Slide 21 text

Conclusion Claude Shannon, p` ere fondateur de la th´ eorie de l’information.

Slide 22

Slide 22 text

Conclusion Claude Shannon, p` ere fondateur de la th´ eorie de l’information.