Slide 1

Slide 1 text

@hollycummins.com QCon London Holly Cummins Red Hat The Efficiency Paradox How to Save Yourself … and the World

Slide 2

Slide 2 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus

Slide 3

Slide 3 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus 2007 let’s make garbage collection more efficient!

Slide 4

Slide 4 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus 2007 let’s make garbage collection more efficient! 2015 lean and xp makes your team more efficient!

Slide 5

Slide 5 text

@holly_cummins #RedHat now senior principal software engineer helping to build Quarkus 2007 let’s make garbage collection more efficient! 2015 lean and xp makes your team more efficient! 2022 quarkus is wonderfully efficient!

Slide 6

Slide 6 text

@holly_cummins #RedHat “this provisioning software is broken”

Slide 7

Slide 7 text

@holly_cummins #RedHat what we sold “this provisioning software is broken” 10 minute provision-time

Slide 8

Slide 8 text

@holly_cummins #RedHat what we sold “this provisioning software is broken” 10 minute provision-time 3 month provision- time what the client thought they’d got

Slide 9

Slide 9 text

@holly_cummins #RedHat what we sold “this provisioning software is broken” 10 minute provision-time 3 month provision- time what the client thought they’d got the reason 84-step pre-approval process

Slide 10

Slide 10 text

@holly_cummins #RedHat waste

Slide 11

Slide 11 text

@hollycummins.com 1700s machine

Slide 12

Slide 12 text

@hollycummins.com 1700s machine energy

Slide 13

Slide 13 text

@hollycummins.com 1700s machine energy energy

Slide 14

Slide 14 text

@hollycummins.com 1700s machine energy energy useful

Slide 15

Slide 15 text

@hollycummins.com 1700s waste machine energy energy useful

Slide 16

Slide 16 text

@hollycummins.com 1890s processes

Slide 17

Slide 17 text

@hollycummins.com time money 1890s processes

Slide 18

Slide 18 text

@hollycummins.com time money 1890s value processes

Slide 19

Slide 19 text

@hollycummins.com time money 1890s value processes

Slide 20

Slide 20 text

@hollycummins.com time money 1890s value processes waste

Slide 21

Slide 21 text

@hollycummins.com software 1960s

Slide 22

Slide 22 text

@hollycummins.com software time electricity hardware 1960s

Slide 23

Slide 23 text

@hollycummins.com software time electricity hardware answers 1960s

Slide 24

Slide 24 text

@hollycummins.com software time electricity hardware answers 1960s waste

Slide 25

Slide 25 text

@hollycummins.com waste is killing the planet

Slide 26

Slide 26 text

@hollycummins.com e-waste is killing the planet

Slide 27

Slide 27 text

@hollycummins.com energy waste is killing the planet

Slide 28

Slide 28 text

@hollycummins.com slow code is killing the planet

Slide 29

Slide 29 text

@hollycummins.com https://blog.linkedin.com/2017/august/3/making-linkedin-more-accessible-via-linkedin-lite Nashik

Slide 30

Slide 30 text

@hollycummins.com https://blog.linkedin.com/2017/august/3/making-linkedin-more-accessible-via-linkedin-lite “my heart sank … our new feature failed to load because of poor internet connectivity” Nashik

Slide 31

Slide 31 text

@hollycummins.com https://blog.linkedin.com/2017/august/3/making-linkedin-more-accessible-via-linkedin-lite modern web is so inefficient it is useless for part of its audience “my heart sank … our new feature failed to load because of poor internet connectivity” Nashik

Slide 32

Slide 32 text

@hollycummins.com forgotten code is killing the planet

Slide 33

Slide 33 text

#RedHat @[email protected] 25% of 16,000 servers doing no useful work https://www.anthesisgroup.com/wp-content/uploads/2019/11/Comatose-Servers-Redux-2017.pdf zombie servers

Slide 34

Slide 34 text

#RedHat @[email protected] the average server: 12 - 18% of capacity https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf

Slide 35

Slide 35 text

@hollycummins.com unused data is killing the planet

Slide 36

Slide 36 text

#RedHat @[email protected] 68% of data is stored and never used https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IB.pdf https://www.seagate.com/gb/en/news/news-archive/seagates-rethink-data-report-reveals-that-68-percent-of-data-available-to-businesses-goes-unleveraged-pr-master/

Slide 37

Slide 37 text

@hollycummins.com it’s not just money

Slide 38

Slide 38 text

@hollycummins.com it’s not just electricity it’s not just money

Slide 39

Slide 39 text

@hollycummins.com it’s not just electricity it’s not just money it’s embodied carbon

Slide 40

Slide 40 text

@hollycummins.com it’s not just electricity it’s water it’s not just money it’s embodied carbon

Slide 41

Slide 41 text

@hollycummins.com it’s not just electricity it’s water it’s e-waste it’s not just money it’s embodied carbon

Slide 42

Slide 42 text

@hollycummins.com we have solutions good news, everyone

Slide 43

Slide 43 text

@holly_cummins #RedHat making turning servers off as safe and easy as turning lights off. and then automate it.

Slide 44

Slide 44 text

@holly_cummins #RedHat solution: LightSwitchOps making turning servers off as safe and easy as turning lights off. and then automate it.

Slide 45

Slide 45 text

@holly_cummins #RedHat absurdly simple scripts my shell script to power down machines overnight saved my school €12,000

Slide 46

Slide 46 text

@holly_cummins #RedHat simple automation we used to leave our applications running all the time @darkandnerdy, Chicago DevOpsDays

Slide 47

Slide 47 text

@holly_cummins #RedHat simple automation we used to leave our applications running all the time when we scripted turning them off at night, we reduced our cloud bill by 30% @darkandnerdy, Chicago DevOpsDays

Slide 48

Slide 48 text

@holly_cummins #RedHat fancier scripts … with a frontend and a backend

Slide 49

Slide 49 text

@holly_cummins #RedHat

Slide 50

Slide 50 text

@holly_cummins #RedHat saves energy

Slide 51

Slide 51 text

@holly_cummins #RedHat saves energy saves money

Slide 52

Slide 52 text

@holly_cummins #RedHat saves energy saves money bonus: tests disaster recovery

Slide 53

Slide 53 text

@holly_cummins #RedHat saves energy saves money bonus: tests disaster recovery

Slide 54

Slide 54 text

@holly_cummins #RedHat

Slide 55

Slide 55 text

@holly_cummins #RedHat solution: faster code

Slide 56

Slide 56 text

#Quarkus @[email protected] focus on making the bottleneck efficient

Slide 57

Slide 57 text

@holly_cummins the vrroooom model

Slide 58

Slide 58 text

@holly_cummins

Slide 59

Slide 59 text

@holly_cummins invented by Dr. Vroom (really!)

Slide 60

Slide 60 text

@holly_cummins naming is the hardest problem in computer science invented by Dr. Vroom (really!)

Slide 61

Slide 61 text

@holly_cummins naming is the hardest problem in computer science

Slide 62

Slide 62 text

@holly_cummins my vrroooom model

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

@holly_cummins #RedHat

Slide 65

Slide 65 text

@holly_cummins #RedHat these two columns are almost the same

Slide 66

Slide 66 text

@holly_cummins #RedHat Energy 1 10 100 Time 1 10 100 energy efficiency across programming languages Python Rust Java Go

Slide 67

Slide 67 text

@holly_cummins #RedHat Energy 1 10 100 Time 1 10 100 the trend line is more or less straight energy efficiency across programming languages Python Rust Java Go

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

case study Quarkus

Slide 70

Slide 70 text

@holly_cummins #RedHat Java application frameworks needed dynamic dependencies the distant past

Slide 71

Slide 71 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 72

Slide 72 text

@holly_cummins #RedHat cloud apps are immutable now

Slide 73

Slide 73 text

@holly_cummins #RedHat a highly dynamic runtime in a container is pointless

Slide 74

Slide 74 text

@holly_cummins Java dynamism

Slide 75

Slide 75 text

@holly_cummins Java dynamism build time

Slide 76

Slide 76 text

@holly_cummins Java dynamism build time runtime

Slide 77

Slide 77 text

@holly_cummins Java dynamism build time runtime

Slide 78

Slide 78 text

@holly_cummins Java dynamism packaging (maven, gradle…) build time runtime

Slide 79

Slide 79 text

@holly_cummins Java dynamism build time runtime

Slide 80

Slide 80 text

@holly_cummins Java dynamism build time runtime

Slide 81

Slide 81 text

@holly_cummins Java dynamism build time runtime load and parse • config files • properties • yaml • xml • etc.

Slide 82

Slide 82 text

@holly_cummins Java dynamism build time runtime

Slide 83

Slide 83 text

@holly_cummins Java dynamism @ @ build time runtime • classpath scanning and annotation discovery • attempt to load class to enable/disable features

Slide 84

Slide 84 text

@holly_cummins Java dynamism @ @ build time runtime

Slide 85

Slide 85 text

@holly_cummins Java dynamism @ @ build time runtime build a metamodel of the world

Slide 86

Slide 86 text

@holly_cummins Java dynamism @ @ build time runtime

Slide 87

Slide 87 text

@holly_cummins Java dynamism @ @ build time runtime start • thread pools • I/O • etc.

Slide 88

Slide 88 text

@holly_cummins Java dynamism @ @ build time runtime ready to do work!

Slide 89

Slide 89 text

@holly_cummins what if we start the application more than once? @ @

Slide 90

Slide 90 text

@holly_cummins what if we start the application more than once? @ @ @ @

Slide 91

Slide 91 text

@holly_cummins what if we start the application more than once? @ @ @ @ @ @

Slide 92

Slide 92 text

@holly_cummins what if we start the application more than once? @ @ @ @ @ @ @ @

Slide 93

Slide 93 text

@holly_cummins what if we start the application more than once? @ @ @ @ @ @ @ @

Slide 94

Slide 94 text

@holly_cummins what if we start the application more than once? @ @ @ @ @ @ @ @ so much work gets redone every time

Slide 95

Slide 95 text

@holly_cummins Hibernate speed example: JTA auto-wiring

Slide 96

Slide 96 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”);

Slide 97

Slide 97 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”);

Slide 98

Slide 98 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”);

Slide 99

Slide 99 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”);

Slide 100

Slide 100 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); …

Slide 101

Slide 101 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); …

Slide 102

Slide 102 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); …

Slide 103

Slide 103 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); …

Slide 104

Slide 104 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); … ~129 auto-wiring attempts

Slide 105

Slide 105 text

@holly_cummins Hibernate speed example: JTA auto-wiring Class.forName(“LikelyJTAImplementation”); Class.forName(“APossibleJTAImplementation”); Class.forName(“AnotherJTAImplementation”); Class.forName(“NicheJTAImplementation”); Class.forName(“VeryNicheJTAImplementation”); … ~129 auto-wiring attempts every single start.

Slide 106

Slide 106 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time

Slide 107

Slide 107 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 108

Slide 108 text

@holly_cummins interface the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 109

Slide 109 text

@holly_cummins unused implementation the one we want interface unused implementation unused implementation the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 110

Slide 110 text

@holly_cummins unused implementation the one we want interface unused implementation unused implementation the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 111

Slide 111 text

@holly_cummins unused implementation the one we want interface megamorphic call slow dispatching unused implementation unused implementation the true cost of loaded classes isn’t just memory + start time method dispatching:

Slide 112

Slide 112 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time the one we want interface

Slide 113

Slide 113 text

@holly_cummins the true cost of loaded classes isn’t just memory + start time the one we want monomorphic call fast dispatching interface

Slide 114

Slide 114 text

@holly_cummins how do we fix all this?

Slide 115

Slide 115 text

@holly_cummins @ @ build time runtime what if we initialize at build time?

Slide 116

Slide 116 text

@holly_cummins @ @ build time runtime what if we initialize at build time?

Slide 117

Slide 117 text

@holly_cummins @ @ build time runtime ready to do work! what if we initialize at build time?

Slide 118

Slide 118 text

@holly_cummins @ @ build time runtime ready to do work! start • thread pools • I/O • etc. what if we initialize at build time?

Slide 119

Slide 119 text

@holly_cummins @ @ repeated starts are now efficient

Slide 120

Slide 120 text

@holly_cummins @ @ repeated starts are now efficient

Slide 121

Slide 121 text

@holly_cummins @ @ repeated starts are now efficient

Slide 122

Slide 122 text

@holly_cummins @ @ repeated starts are now efficient

Slide 123

Slide 123 text

@holly_cummins @ @ repeated starts are now efficient

Slide 124

Slide 124 text

@holly_cummins @ @ repeated starts are now efficient

Slide 125

Slide 125 text

@holly_cummins @ @ repeated starts are now efficient less wasted work

Slide 126

Slide 126 text

@holly_cummins #RedHat capacity Source: John O’Hara Setup: • REST + CRUD • large heap • RAPL energy measurement Assumptions: • US energy mix climate impact of framework choice

Slide 127

Slide 127 text

@holly_cummins #RedHat capacity Source: John O’Hara Setup: • REST + CRUD • large heap • RAPL energy measurement Assumptions: • US energy mix climate impact of framework choice shorter line means lower max throughput

Slide 128

Slide 128 text

@holly_cummins #RedHat capacity Source: John O’Hara Setup: • REST + CRUD • large heap • RAPL energy measurement Assumptions: • US energy mix climate impact of framework choice shorter line means lower max throughput higher line means worse carbon footprint

Slide 129

Slide 129 text

@holly_cummins #RedHat capacity Source: John O’Hara Setup: • REST + CRUD • large heap • RAPL energy measurement Assumptions: • US energy mix climate impact of framework choice vrrrooom model in action: quarkus on JVM has the smallest footprint … because it has the highest throughput shorter line means lower max throughput higher line means worse carbon footprint

Slide 130

Slide 130 text

@holly_cummins throughput startup time + footprint

Slide 131

Slide 131 text

@holly_cummins we beat the trade-off. throughput startup time + footprint

Slide 132

Slide 132 text

@holly_cummins we beat the trade-off. throughput startup time + footprint

Slide 133

Slide 133 text

@holly_cummins we beat the trade-off. throughput startup time + footprint it’s a double-win.

Slide 134

Slide 134 text

No content

Slide 135

Slide 135 text

@holly_cummins we beat another trade-off. human efficiency machine efficiency

Slide 136

Slide 136 text

@holly_cummins we beat another trade-off. human efficiency machine efficiency

Slide 137

Slide 137 text

@holly_cummins we beat another trade-off. human efficiency machine efficiency another double-win.

Slide 138

Slide 138 text

@hollycummins.com boilerplate code

Slide 139

Slide 139 text

@hollycummins.com boilerplate code

Slide 140

Slide 140 text

@hollycummins.com live coding

Slide 141

Slide 141 text

@hollycummins.com live coding -less energy wasted running full build + launch cycles

Slide 142

Slide 142 text

@hollycummins.com live coding -less energy wasted running full build + launch cycles -less dev time wasted waiting for full build + launch cycles

Slide 143

Slide 143 text

@hollycummins.com targeted continuous testing

Slide 144

Slide 144 text

@hollycummins.com targeted continuous testing -less energy wasted running full test suites

Slide 145

Slide 145 text

@hollycummins.com targeted continuous testing -less energy wasted running full test suites -less dev time wasted waiting for full test runs

Slide 146

Slide 146 text

@holly_cummins developer joy

Slide 147

Slide 147 text

@holly_cummins developer joy

Slide 148

Slide 148 text

@holly_cummins developer joy is a double win

Slide 149

Slide 149 text

@holly_cummins the double win isn’t just a java thing.

Slide 150

Slide 150 text

@holly_cummins the ai-lephant in the room

Slide 151

Slide 151 text

@holly_cummins we don’t need to have a nice programming model; people can just use AI to write the bad code!

Slide 152

Slide 152 text

@holly_cummins we don’t need to have a nice programming model; people can just use AI to write the bad code! 3 problems.

Slide 153

Slide 153 text

@holly_cummins problem 1: cost

Slide 154

Slide 154 text

@holly_cummins problem 1: cost

Slide 155

Slide 155 text

@holly_cummins #RedHat problem 2: correctness

Slide 156

Slide 156 text

@holly_cummins #RedHat efficiency of kangaroo- powered renewable energy problem 2: correctness

Slide 157

Slide 157 text

@holly_cummins #RedHat efficiency of kangaroo- powered renewable energy 15% problem 2: correctness

Slide 158

Slide 158 text

@holly_cummins #RedHat

Slide 159

Slide 159 text

@holly_cummins #RedHat

Slide 160

Slide 160 text

@holly_cummins #RedHat

Slide 161

Slide 161 text

@holly_cummins #RedHat disclaimer:

Slide 162

Slide 162 text

@holly_cummins #RedHat disclaimer: this isn’t a thing.

Slide 163

Slide 163 text

@holly_cummins #RedHat disclaimer: this isn’t a thing. researchers did not use kangaroos on trampolines for electricity generation.

Slide 164

Slide 164 text

@hollycummins.com problem 3: verbosity

Slide 165

Slide 165 text

@hollycummins.com problem 3: verbosity

Slide 166

Slide 166 text

@hollycummins.com problem 3: verbosity

Slide 167

Slide 167 text

@hollycummins.com problem 3: verbosity

Slide 168

Slide 168 text

@hollycummins.com problem 3: verbosity

Slide 169

Slide 169 text

@hollycummins.com problem 3: verbosity

Slide 170

Slide 170 text

@hollycummins.com 70% unnecessary code problem 3: verbosity

Slide 171

Slide 171 text

@hollycummins.com 70% more code than we need hurts us

Slide 172

Slide 172 text

@hollycummins.com 70% more code than we need hurts us we spend far more time reading code than writing it

Slide 173

Slide 173 text

@hollycummins.com “illusion of efficiency”

Slide 174

Slide 174 text

@hollycummins.com we have a solution

Slide 175

Slide 175 text

@holly_cummins -small fine-tuned models -small model + RAG -hybrid: symbolic reasoning + model solution:

Slide 176

Slide 176 text

@holly_cummins illusions of efficiency are everywhere

Slide 177

Slide 177 text

@hollycummins.com limits to efficiency

Slide 178

Slide 178 text

@holly_cummins #RedHat Jevon’s paradox limit 1: economic theory “efficiency improvements can sometimes lead to increased consumption”

Slide 179

Slide 179 text

@holly_cummins #RedHat what we imagine when we widen roads

Slide 180

Slide 180 text

@holly_cummins #RedHat what we get

Slide 181

Slide 181 text

@holly_cummins #RedHat limit 2: physics

Slide 182

Slide 182 text

@holly_cummins #RedHat even for machines, there is a limit to efficiency limit 2: physics

Slide 183

Slide 183 text

@holly_cummins #RedHat even for machines, there is a limit to efficiency …and it’s lower than you think limit 2: physics

Slide 184

Slide 184 text

@hollycummins.com source: http://geosci.uchicago.edu/~moyer/GEOS24705/2016/Assignments/PS7.pdf physics limit 2

Slide 185

Slide 185 text

@holly_cummins #RedHat limit 2

Slide 186

Slide 186 text

@holly_cummins #RedHat limit 2

Slide 187

Slide 187 text

@holly_cummins #RedHat theoretical max efficiency of a combustion engine limit 2

Slide 188

Slide 188 text

@holly_cummins #RedHat theoretical max efficiency of a combustion engine limit 2 37%

Slide 189

Slide 189 text

@hollycummins.com efficiency can give worse outcomes

Slide 190

Slide 190 text

@holly_cummins #RedHat typical efficiency of a combustion engine

Slide 191

Slide 191 text

@holly_cummins #RedHat ~20% typical efficiency of a combustion engine

Slide 192

Slide 192 text

@holly_cummins #RedHat if we want the engine to not wear out ~20% typical efficiency of a combustion engine

Slide 193

Slide 193 text

@holly_cummins resiliency efficiency

Slide 194

Slide 194 text

@hollycummins.com

Slide 195

Slide 195 text

@hollycummins.com speed

Slide 196

Slide 196 text

@hollycummins.com speed vs resiliency

Slide 197

Slide 197 text

@hollycummins.com let’s talk about your multi-region failover.

Slide 198

Slide 198 text

@hollycummins.com #RedHat

Slide 199

Slide 199 text

@hollycummins.com highly efficient (optimum number of legs) #RedHat

Slide 200

Slide 200 text

@hollycummins.com highly efficient (optimum number of legs) less efficient (more legs than needed) #RedHat

Slide 201

Slide 201 text

@hollycummins.com highly efficient (optimum number of legs) less efficient (more legs than needed) resilient #RedHat

Slide 202

Slide 202 text

@hollycummins.com highly efficient (optimum number of legs) less efficient (more legs than needed) resilient #RedHat

Slide 203

Slide 203 text

@hollycummins.com highly efficient (optimum number of legs) no resiliency less efficient (more legs than needed) resilient #RedHat

Slide 204

Slide 204 text

@hollycummins.com highly efficient (optimum number of legs) no resiliency less efficient (more legs than needed) resilient #RedHat resiliency lowers efficiency

Slide 205

Slide 205 text

@hollycummins.com it’s the same for people

Slide 206

Slide 206 text

@hollycummins.com it’s the same for people all work and no play is … not efficient

Slide 207

Slide 207 text

@hollycummins.com

Slide 208

Slide 208 text

@hollycummins.com

Slide 209

Slide 209 text

@hollycummins.com

Slide 210

Slide 210 text

@hollycummins.com hi colleague, could you ple-

Slide 211

Slide 211 text

@hollycummins.com hi colleague, could you ple- argh! &!*$*%@!{*%^!^! busy! NO! I CANNOT!

Slide 212

Slide 212 text

@hollycummins.com

Slide 213

Slide 213 text

@holly_cummins the value of slack

Slide 214

Slide 214 text

@holly_cummins the value of slack

Slide 215

Slide 215 text

@holly_cummins the value of slack

Slide 216

Slide 216 text

@holly_cummins the value of slack naming is still the hardest problem in computer science

Slide 217

Slide 217 text

@holly_cummins the value of slack

Slide 218

Slide 218 text

@holly_cummins #RedHat doing nothing

Slide 219

Slide 219 text

@holly_cummins #RedHat doing nothing efficiency

Slide 220

Slide 220 text

@holly_cummins #RedHat the default mode network idle minds can solve hard problems

Slide 221

Slide 221 text

#RedHat @holly_cummins

Slide 222

Slide 222 text

#RedHat @holly_cummins

Slide 223

Slide 223 text

#RedHat @holly_cummins

Slide 224

Slide 224 text

#RedHat @holly_cummins

Slide 225

Slide 225 text

#RedHat @holly_cummins 14% took showers specifically for the purpose of coming up with ideas

Slide 226

Slide 226 text

@hollycummins.com psychology says we need idle time; maths agrees

Slide 227

Slide 227 text

@hollycummins.com queueing theory says systems need to run under-capacity to function psychology says we need idle time; maths agrees

Slide 228

Slide 228 text

@hollycummins.com queuing theory basics

Slide 229

Slide 229 text

@hollycummins.com queuing theory basics arrival process

Slide 230

Slide 230 text

@hollycummins.com queuing theory basics arrival process Poisson distribution

Slide 231

Slide 231 text

@hollycummins.com queuing theory basics queue arrival process Poisson distribution

Slide 232

Slide 232 text

@hollycummins.com queuing theory basics queue arrival process Poisson distribution

Slide 233

Slide 233 text

@hollycummins.com queuing theory basics queue arrival process servers Poisson distribution

Slide 234

Slide 234 text

@hollycummins.com queuing theory basics queue arrival process servers Poisson distribution

Slide 235

Slide 235 text

@hollycummins.com queuing theory basics queue arrival process servers completed work Poisson distribution

Slide 236

Slide 236 text

@hollycummins.com if arrival rates are low, servers will be idle queue arrival process servers completed work

Slide 237

Slide 237 text

@hollycummins.com queue arrival process servers completed work if server capacity is too low, wait times are high

Slide 238

Slide 238 text

@hollycummins.com utilisation lead time http://brodzinski.com/2015/01/slack-time-value.html assuming Poisson distribution of arrivals

Slide 239

Slide 239 text

@hollycummins.com utilisation lead time http://brodzinski.com/2015/01/slack-time-value.html assuming Poisson distribution of arrivals 80% utilisation → 90% utilisation: wait times double

Slide 240

Slide 240 text

@hollycummins.com utilisation http://brodzinski.com/2015/01/slack-time-value.html cost delay cost assuming Poisson distribution of arrivals 80% utilisation → 90% utilisation: wait times double

Slide 241

Slide 241 text

@hollycummins.com utilisation http://brodzinski.com/2015/01/slack-time-value.html cost delay cost cost of idle capacity assuming Poisson distribution of arrivals 80% utilisation → 90% utilisation: wait times double

Slide 242

Slide 242 text

@holly_cummins #RedHat the 6-day working week was the standard

Slide 243

Slide 243 text

@holly_cummins #RedHat the 6-day working week

Slide 244

Slide 244 text

@holly_cummins #RedHat

Slide 245

Slide 245 text

@holly_cummins #RedHat productivity stayed the same

Slide 246

Slide 246 text

@holly_cummins #RedHat

Slide 247

Slide 247 text

@holly_cummins #RedHat the 4-day working week?

Slide 248

Slide 248 text

@holly_cummins #RedHat 42% decrease in resignations the 4-day working week?

Slide 249

Slide 249 text

@holly_cummins #RedHat 42% decrease in resignations 36% increase in revenue the 4-day working week?

Slide 250

Slide 250 text

@holly_cummins #RedHat efficiency may not look how we expect

Slide 251

Slide 251 text

@holly_cummins #RedHat most efficient land animal efficiency may not look how we expect

Slide 252

Slide 252 text

@holly_cummins #RedHat most efficient land animal cool and bouncy efficiency may not look how we expect

Slide 253

Slide 253 text

@holly_cummins #RedHat most efficient land animal cool and bouncy uncool and floppy efficiency may not look how we expect

Slide 254

Slide 254 text

@holly_cummins #RedHat most efficient land animal cool and bouncy uncool and floppy whole body is basically slack efficiency may not look how we expect

Slide 255

Slide 255 text

@holly_cummins #RedHat most efficient land animal cool and bouncy uncool and floppy whole body is basically slack most efficient animal efficiency may not look how we expect

Slide 256

Slide 256 text

@holly_cummins #RedHat inverse Jevon’s manoeuvre doing less achieves more

Slide 257

Slide 257 text

@holly_cummins being effective working less

Slide 258

Slide 258 text

@holly_cummins being effective working less

Slide 259

Slide 259 text

@holly_cummins being effective working less another double-win.

Slide 260

Slide 260 text

@hollycummins.com tl;dpa (too long; didn’t pay attention)

Slide 261

Slide 261 text

@hollycummins.com tl;dpa ⁃ don’t accept waste; our world deserves better (too long; didn’t pay attention)

Slide 262

Slide 262 text

@hollycummins.com tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more (too long; didn’t pay attention)

Slide 263

Slide 263 text

@hollycummins.com tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more ⁃ happiness is not waste (too long; didn’t pay attention)

Slide 264

Slide 264 text

@hollycummins.com tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more ⁃ happiness is not waste ⁃ idleness is not waste (too long; didn’t pay attention)

Slide 265

Slide 265 text

@hollycummins.com tl;dpa ⁃ don’t accept waste; our world deserves better ⁃ work less; achieve more ⁃ happiness is not waste ⁃ idleness is not waste ⁃ look for double-wins everywhere (too long; didn’t pay attention)

Slide 266

Slide 266 text

@hollycummins.com slides