Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
プロダクト改善のためのデータ分析⼊⾨ Gunosy Inc. 2017.9.27 Confidential
Slide 2
Slide 2 text
2 ©Gunosy Inc. ⾃⼰紹介 • ⽯塚 淳(いしつか じゅん) • 株式会社Gunosy • 開発本部データ分析部 • 東京⼤学⼯学部卒 • 坂⽥・森研究室 • 某ソシャゲ会社に新卒⼊社 • データ分析基盤の開発を担当 • エンジニア業務がメイン • 2016年2⽉に株式会社Gunosyに⼊社 • グノシーのデータ分析を担当
Slide 3
Slide 3 text
3 ©Gunosy Inc. 今⽇話すこと • Gunosy/データ分析部のやっていること • データの収集⽅法 • ログ収集基盤 • 分析基盤 • データの活⽤⽅法 • 記事配信ロジック • KPI管理 • プロダクト開発
Slide 4
Slide 4 text
4 ©Gunosy Inc. Gunosyとは • グノシーは、データとアルゴリズムの会社 • 「情報を世界中の⼈に最適に届ける」がミッション • ニュースアプリだけの会社ではない • 動画、商品、広告
Slide 5
Slide 5 text
5 ©Gunosy Inc. データ分析部とは • データ • ユーザ⾏動のデータを解析し施策に落とし込み、効果を検証する
Slide 6
Slide 6 text
6 ©Gunosy Inc. データ分析部とは • アルゴリズム • ユーザにコンテンツを適切な形で情報を伝える
Slide 7
Slide 7 text
7 ©Gunosy Inc. 今⽇話すこと • Gunosy/データ分析部のやっていること • データの収集⽅法 • ログ収集基盤 • 分析基盤 • データの活⽤⽅法 • 記事配信ロジック • KPI管理 • プロダクト開発
Slide 8
Slide 8 text
8 ©Gunosy Inc. データの収集⽅法 • Gunosyのログ基盤は⼤きく2つ • 確定値ログ基盤 • KPIダッシュボード • 記事配信アルゴリズム • データ分析 • 速報値ログ基盤 • 速報⽤KPI(Hourly Active User, ⼈気記事) • 記事配信アルゴリズム
Slide 9
Slide 9 text
9 ©Gunosy Inc. データの収集⽅法 • 今回は確定値のログ基盤のみ紹介 • 確定値ログ基盤 • KPIダッシュボード • 記事配信アルゴリズム • データ分析 • 速報値ログ基盤 • 速報⽤KPI(Hourly Active User, ⼈気記事) • 記事配信アルゴリズム
Slide 10
Slide 10 text
10 ©Gunosy Inc. 確定値ログ基盤 ©Gunosy Inc. X ֬ఆϩάج൫ Redshift ϩάαʔόʔ S3 SQS ίϯόʔλʔ Fluentd BigQuery KPIόον αʔόʔ μογϡϘʔυ
Slide 11
Slide 11 text
11 ©Gunosy Inc. KPIダッシュボード • Redash • 様々なデータ・ソースに統⼀的にアクセスできる可視化ツール • SQLで完結 • Web画⾯でポチポチするとグラフ表⽰できる • ホスティングサービスが存在 • ⾃社運⽤Djangoダッシュボード • フルスクラッチ実装なので、⾃由度は⾼い • いにしえより利⽤ • SQLで完結しない指標を⾒るときに実装
Slide 12
Slide 12 text
12 ©Gunosy Inc. データ分析基盤 • BIツール + DB • 基本はRedashでRedshiftやBigQueryを叩く • 複雑な処理や機械学習モデルを使⽤した分析はJupyterで ©Gunosy Inc. X σʔλੳج൫ Redshift BigQuery Pandas
Slide 13
Slide 13 text
13 ©Gunosy Inc. ここからが本題、データの活⽤⽅法 • ログ基盤が整って、SQLやJupyterからデータを取得できる環境が揃った • ここまでの⼯程はWeb上にも豊富に存在 • AWSやGCPのお陰でそこまで⼿間は掛からない • で、この後どうするの︖︖︖ • とりあえずKPIでも可視化してみる︖ • 機械学習で◯◯予測してみたい
Slide 14
Slide 14 text
14 ©Gunosy Inc. 今⽇話すこと • Gunosy/データ分析部のやっていること • データの収集⽅法 • ログ収集基盤 • 分析基盤 • データの活⽤⽅法 • 記事配信ロジック • KPI管理 • プロダクト開発
Slide 15
Slide 15 text
15 ©Gunosy Inc. 記事配信ロジック • グノシーの記事配信ロジックの概要
Slide 16
Slide 16 text
16 ©Gunosy Inc. 記事配信ロジック • 詳細はブログで
Slide 17
Slide 17 text
17 ©Gunosy Inc. KPI管理 • KPIをいくつかの要素に分解してモニタリング • 予実を⽇次で管理 • 分解の1例 • 売上 • DAU • 新規獲得数 • 継続率 • Sales/DAU(ARPU) • AdImpSales/DAU • AdClickSales/DAU
Slide 18
Slide 18 text
18 ©Gunosy Inc. Redashによるダッシュボード • 分解したKPIを⼀覧できるダッシュボードをRedashで作成 • 先ほどのKPIツリーを意識した構成 • 予算に対する実績の確認
Slide 19
Slide 19 text
19 ©Gunosy Inc. 数値を⾒る仕組み • データ分析部では2つの朝会を実施している • 開発部朝会 • グノシー、ニュースパスそれぞれの開発部で実施 • 昨⽇やったこと、今⽇やること、共有事項の確認 • 数値確認朝会 • データ分析部で実施 • 各プロダクトのKPIを確認 • 数値に異常があれば、朝会後詳細な調査を実施 • 例えば • 1⽇後継続率が下がった • エンタメタブのクリック数が下がった
Slide 20
Slide 20 text
20 ©Gunosy Inc. プロダクト開発 • グノシーのプロダクト改善は現状の数値の把握から始まる • とはいえ現状の把握だけではなく、仮説・検証・意思決定も含んだ分析が⼤切 • 悪い例 • グノシーユーザの⼥性割合は45%だが、⼣⽅の利⽤ユーザに絞ると、 70%が⼥性である。 • 良い例 • グノシーユーザの⼥性割合は45%だが、⼣⽅の利⽤ユーザに絞ると、 70%が⼥性である。なので、⼣⽅に登録したユーザには、⼥性に⼈気 のコンテンツを多く表⽰させてみて、継続率に変化があるか試してみ る。
Slide 21
Slide 21 text
21 ©Gunosy Inc. プロダクト開発のサイクル
Slide 22
Slide 22 text
22 ©Gunosy Inc. 仮説を出すためのヒント • 施策を⾏うためのヒントを事前の分析から得る • 失敗から学ぶ • 重要な数値をモニタリングし、下がった原因を探る(前述のKPI管理参照) • 他プロダクト事例 • 他社のABテストが100%適⽤になった、撤退した • ニュースパス、ルクラ、バザリー、ビデレーからの輸⼊ • ユーザ間の⽐較 • OS、獲得経路別、ユーザが最初に使った機能ごとのKPIを⽐較 • ⼤切な数値と相関の⼤きな数値 • ある⾏動の回数が⾼いと、重要な数値も⾼くなる傾向がある
Slide 23
Slide 23 text
23 ©Gunosy Inc. ABテストによる効果測定と意思決定 • ABテストによる意思決定の徹底 • 1⽇に⾛っているABテストは約20個(グノシーのみ) • ABテストによるメリット • 施策の効果検証 • ニュースアプリなので、時事性や季節の変動を受けやすいので、効果 の計測がしづらい • 意図しない数値の低下、ユーザービリティの低下を防ぐ • インフラの変更 • アプリのリリース • Androidは段階的リリースを実施している
Slide 24
Slide 24 text
24 ©Gunosy Inc. 2 効果測定 よくない例
Slide 25
Slide 25 text
25 ©Gunosy Inc. 2 効果測定 よくない例 機能リリース
Slide 26
Slide 26 text
26 ©Gunosy Inc. 2 効果測定 よくない例 機能リリース ⼤きなイベント発⽣
Slide 27
Slide 27 text
27 ©Gunosy Inc. 2 効果測定 よくない例 機能リリース ⼤きなイベント発⽣ 前より低い…?
Slide 28
Slide 28 text
28 ©Gunosy Inc. ABテストによる効果測定と意思決定 • ABテストによる意思決定の徹底 • 1⽇に⾛っているABテストは約20個(グノシーのみ) • ABテストによるメリット • 施策の効果検証 • ニュースアプリなので、時事性や季節の変動を受けやすいので、効果 の計測がしづらい • 意図しない数値の低下、ユーザービリティの低下を防ぐ • インフラの変更 • アプリのリリース • Androidは段階的リリースを実施している
Slide 29
Slide 29 text
29 ©Gunosy Inc. 2 効果測定 ABテストの例 • 特定のユーザ群にUIやアルゴリズムを出し分けるテストを⾏う Test A Test B クリック率 5% 6% 滞在時間 30 35
Slide 30
Slide 30 text
30 ©Gunosy Inc. 3 この例の場合であれば Test Bを全体に適応 (※)実際は複数の指標を見ている 効果測定 ABテストの例 • 特定のユーザ群にUIやアルゴリズムを出し分けるテストを⾏う Test A Test B クリック率 5% 6% 滞在時間 30 35
Slide 31
Slide 31 text
31 ©Gunosy Inc. 3 効果測定 ABテストの例 機能リリース ⼤きなイベント発⽣ 前より低い…? この例の場合であれば Test Bを全体に適応 (※)実際は複数の指標を⾒ている
Slide 32
Slide 32 text
32 ©Gunosy Inc. ABテストによる効果測定と意思決定 • ABテストは1%公開から開始して100%まで段階的に割合を引き上げていく • グノシーで⼀般的なABテストだと1%から100%までに1, 2ヶ⽉掛かる • 割合ごとに⾒る数値と期間は異なる • 1%(1 ~ 3⽇) • ⼤幅な数値低下や不具合がないか • 5%、10%(7⽇) • 期待したKPIは向上しているか • 20%(14⽇) • 継続率
Slide 33
Slide 33 text
33 ©Gunosy Inc. 意思決定 • グノシーマンガ撤退におけるケーススタディ • ユニットエコノミクスの検証 • Pros • マンガ獲得ユーザー • LTVとCPI • ⾮マンガ獲得ユーザー • マンガによる継続率、Salesの上昇 • Cons • コンテンツ費⽤、サーバー代