Slide 1

Slide 1 text

ACTIVE SUBSPACES in PDEs with many inputs PAUL CONSTANTINE Assistant Professor Department of Computer Science University of Colorado, Boulder activesubspaces.org! @DrPaulynomial! SLIDES AVAILABLE UPON REQUEST DISCLAIMER: These slides are meant to complement the oral presentation. Use out of context at your own risk.

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

Selected parameterized PDE literature My personal bibliography Ghanem and Spanos (1991); Babuška, Tempone, and Zouraris (2004); Babuška, Nobile, and Tempone (2007), Nobile, Tempone, and Webster (2008); Doostan and Iaccarino (2009); Doostan, Validi, and Iaccarino (2013); Doostan and Owhadi (2011); Gunzburger, Webster, and Zhang (2014); Chen, Gittelson, Jakeman, and Xiu (2015) Cohen, DeVore, and Schwab (2010, 2011); Chkifa, Cohen, and Schwab (2014); Cohen and DeVore (2015) Prud’homme, Rovas, Veroy, Machiels, Maday, Patera, Turinici (2002); Barrault, Maday, Nguyen, and Patera (2004); Rozza, Huynh, and Patera (2007); Haasdonk and Ohlberger (2008) Graham, Kuo, Nuyens, Scheichl, and Sloan (2012); Kuo and Nuyens (2016); Parametric PDEs: Sparse or Low-Rank Approximations? Bachmayr, Cohen, and Dahmen (arXiv, 2017)

Slide 4

Slide 4 text

How many dimensions is high dimensions? Goal is to estimate … •  the solution map •  spatially varying statistics •  statistics of output of interest with as few function evaluations as possible.

Slide 5

Slide 5 text

r · (aru) = 1

Slide 6

Slide 6 text

D 1 2 The PDE The coefficients r · (aru) = 1, s 2 D u = 0, s 2 1 n · aru = 0, s 2 2 log(a(s, x)) = m X k=1 p ✓k k(s) xk Cov( s1, s2) = 2 exp ✓ ks1 s2 k1 2 ` ◆ The quantity of interest f( x ) = Z u( s , x ) d 2 •  100-term KL •  Gaussian r.v.’s Rough fields Spatial average over Neumann boundary Constantine, Dow, and Wang (2014)

Slide 7

Slide 7 text

Constantine, Dow, and Wang (2014)

Slide 8

Slide 8 text

Long length scale, ` = 1 log( a (s , x)) u( s , x ) Constantine, Dow, and Wang (2014)

Slide 9

Slide 9 text

Short length scale, log( a (s , x)) u( s , x ) ` = 0.01 Constantine, Dow, and Wang (2014)

Slide 10

Slide 10 text

f( x ) ⇢( x ) rf( x ) PDE solution’s spatial average along the Neumann boundary Standard Gaussian density Gradient computed with adjoint equations Constantine, Dow, and Wang (2014) NOT SOLUTION APPROXIMATION. NO MODEL REDUCTION IN SOLUTION SPACE.

Slide 11

Slide 11 text

C = Z rf( x ) rf( x )T ⇢( x ) d x = W ⇤W T Define the active subspace Consider a function and its gradient vector, The average outer product of the gradient and its eigendecomposition, Partition the eigendecomposition, Rotate and separate the coordinates, ⇤ =  ⇤1 ⇤2 , W = ⇥ W 1 W 2 ⇤ , W 1 2 Rm⇥n x = W W T x = W 1W T 1 x + W 2W T 2 x = W 1y + W 2z active variables inactive variables f = f( x ), x 2 Rm, rf( x ) 2 Rm, ⇢ : Rm ! R + Constantine, Dow, and Wang (2014)

Slide 12

Slide 12 text

i = Z w T i rf( x ) 2 ⇢( x ) d x , i = 1, . . . , m LEMMA Constantine, Dow, and Wang (2014) average, squared, directional derivative along eigenvector eigenvalue i > j | f( x + h wi) f( x ) | > | f( x + h wj) f( x ) | For small , on average, h WHAT DOES IT MEAN?

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

Design a jet nozzle under uncertainty (DARPA SEQUOIA project) 10-parameter engine performance model

Slide 15

Slide 15 text

Index 1 2 3 4 5 6 Eigenvalues 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 Index 1 2 3 4 5 6 Eigenvalues 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 Long length scale, ` = 1 Short length scale, ` = 0.01 Eigenvalues of Z rf rfT ⇢ d x

Slide 16

Slide 16 text

Parameter index 0 50 100 Eigenvector components -1 -0.5 0 0.5 1 Parameter index 0 50 100 Eigenvector components -1 -0.5 0 0.5 1 First eigenvector of Z rf rfT ⇢ d x Long length scale, ` = 1 Short length scale, ` = 0.01

Slide 17

Slide 17 text

-4 -2 0 2 4 Quantity of interest #10-3 0 1 2 3 4 5 -4 -2 0 2 4 Quantity of interest #10-4 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 Plotting versus Long length scale, ` = 1 Short length scale, ` = 0.01 f( x ) w T x w T x w T x

Slide 18

Slide 18 text

-4 -2 0 2 4 Quantity of interest 10-10 10-5 100 105 Index 0 2 4 6 Eigenvalues 10-10 100 1010 Est BI Index 0 2 4 6 Eigenvalues 10-10 100 1010 ` = 1, 2 = 1/64 w T x

Slide 19

Slide 19 text

` = 1, 2 = 1/16 -4 -2 0 2 4 Quantity of interest 10-10 10-5 100 105 Index 0 2 4 6 Eigenvalues 10-10 100 1010 Est BI Index 0 2 4 6 Eigenvalues 10-10 100 1010 w T x

Slide 20

Slide 20 text

-4 -2 0 2 4 Quantity of interest 10-10 10-5 100 105 Index 0 2 4 6 Eigenvalues 10-10 100 1010 Est BI Index 0 2 4 6 Eigenvalues 10-10 100 1010 ` = 1, 2 = 1/4 w T x

Slide 21

Slide 21 text

-4 -2 0 2 4 Quantity of interest 10-10 10-5 100 105 Index 0 2 4 6 Eigenvalues 10-10 100 1010 Est BI Index 0 2 4 6 Eigenvalues 10-10 100 1010 ` = 1, 2 = 1 w T x

Slide 22

Slide 22 text

-4 -2 0 2 4 Quantity of interest 10-10 10-5 100 105 Index 0 2 4 6 Eigenvalues 10-10 100 1010 Est BI Index 0 2 4 6 Eigenvalues 10-10 100 1010 ` = 1, 2 = 4 w T x

Slide 23

Slide 23 text

-4 -2 0 2 4 Quantity of interest 10-10 10-5 100 105 Index 0 2 4 6 Eigenvalues 10-10 100 1010 Est BI Index 0 2 4 6 Eigenvalues 10-10 100 1010 ` = 1, 2 = 16 w T x

Slide 24

Slide 24 text

` = 1, 2 = 64 -4 -2 0 2 4 Quantity of interest 10-10 10-5 100 105 Index 0 2 4 6 Eigenvalues 10-10 100 1010 Est BI Index 0 2 4 6 Eigenvalues 10-10 100 1010 w T x

Slide 25

Slide 25 text

` = 0.01, 2 = 1/64 -4 -2 0 2 4 Quantity of interest #10-3 0 0.5 1 1.5 Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 w T x

Slide 26

Slide 26 text

` = 0.01, 2 = 1/16 -4 -2 0 2 4 Quantity of interest #10-3 0 0.5 1 1.5 Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 w T x

Slide 27

Slide 27 text

-4 -2 0 2 4 Quantity of interest #10-3 0 0.5 1 1.5 Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 ` = 0.01, 2 = 1/4 w T x

Slide 28

Slide 28 text

-4 -2 0 2 4 Quantity of interest #10-3 0 0.5 1 1.5 Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 ` = 0.01, 2 = 1 w T x

Slide 29

Slide 29 text

-4 -2 0 2 4 Quantity of interest #10-3 0 0.5 1 1.5 Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 ` = 0.01, 2 = 4 w T x

Slide 30

Slide 30 text

-4 -2 0 2 4 Quantity of interest #10-3 0 0.5 1 1.5 Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 ` = 0.01, 2 = 16 w T x

Slide 31

Slide 31 text

-4 -2 0 2 4 Quantity of interest #10-3 0 0.5 1 1.5 Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 Est BI Index 1 2 3 4 5 6 Eigenvalues 10-16 10-14 10-12 10-10 10-8 10-6 ` = 0.01, 2 = 64 w T x

Slide 32

Slide 32 text

<2 10-2 100 102 ^ 61 =^ 62 101 102 103 104 105 <2 10-2 100 102 ^ 61 =^ 62 100 101 102 103 104 105 Long length scale, ` = 1 Short length scale, ` = 0.01 Plotting versus CONJECTURE: decreases linearly with log( 1/ 2) log( 2 ) log( 2 ) log( 1/ 2)

Slide 33

Slide 33 text

Some numerical evidence that the low- dimensional structure in some common parameterized PDEs looks like active subspaces. TODO: Prove it! PAUL CONSTANTINE Assistant Professor University of Colorado, Boulder activesubspaces.org! @DrPaulynomial! TAKE HOMES Active Subspaces SIAM (2015)