Slide 1

Slide 1 text

[email protected] https://itakigawa.github.io/ IBISML 2022.12.22 @

Slide 2

Slide 2 text

( ) ( ) / (7 ) (7 ) JST (3.5 ) ( ) ⾒ (4 ) (4 ) ( ) ( ) AIP ATR ( )

Slide 3

Slide 3 text

Materials Informatics (Bioinformatics) Materials Informatics ( )

Slide 4

Slide 4 text

. . o -the-shelf . PDF https://itakigawa.page.link/IBISML taki

Slide 5

Slide 5 text

. . o -the-shelf . PDF https://itakigawa.page.link/IBISML taki

Slide 6

Slide 6 text

‣ ‣ ( ) ( )

Slide 7

Slide 7 text

( ) AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTEis6Xc3Lk7mzdnRGRFb6BFmo6RMu/UPInnBMXJGGklUYzu9rdCWLOtHHdb2dpeWV1bb2wUdzc2t7ZLe3tN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjeZ33ykSrNI3ptRTH2B+5KFjGBjpUYnEOnTuFsquxV3ArRIvJyUIUetW/rp9CKSCCoN4VjrtufGxk+xMoxwOi52Ek1jTIa4T9uWSiyo9tPJtWN0bJUeCiNlSxo0Uf9OpFhoPRKB7RTYDPS8l4n/ee3EhFd+ymScGCrJdFGYcGQilL2OekxRYvjIEkwUs7ciMsAKE2MDmtkSiCwTbz6BRdI4rXgXlfO7s3L1Ok+nAIdwBCfgwSVU4RZqUAcCD/ACr/DmPDvvzofzOW1dcvKZA5iB8/ULqrqV8Q== x AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ== x AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U= y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ= y⇤ AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤

Slide 8

Slide 8 text

( ) AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTEis6Xc3Lk7mzdnRGRFb6BFmo6RMu/UPInnBMXJGGklUYzu9rdCWLOtHHdb2dpeWV1bb2wUdzc2t7ZLe3tN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjeZ33ykSrNI3ptRTH2B+5KFjGBjpUYnEOnTuFsquxV3ArRIvJyUIUetW/rp9CKSCCoN4VjrtufGxk+xMoxwOi52Ek1jTIa4T9uWSiyo9tPJtWN0bJUeCiNlSxo0Uf9OpFhoPRKB7RTYDPS8l4n/ee3EhFd+ymScGCrJdFGYcGQilL2OekxRYvjIEkwUs7ciMsAKE2MDmtkSiCwTbz6BRdI4rXgXlfO7s3L1Ok+nAIdwBCfgwSVU4RZqUAcCD/ACr/DmPDvvzofzOW1dcvKZA5iB8/ULqrqV8Q== x AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ== x AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U= y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ= y⇤ AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ= ? AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ= ? AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ= ? AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ= ? AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ= ? AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤

Slide 9

Slide 9 text

( ) AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ== x AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U= y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ= y⇤ AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTEis6Xc3Lk7mzdnRGRFb6BFmo6RMu/UPInnBMXJGGklUYzu9rdCWLOtHHdb2dpeWV1bb2wUdzc2t7ZLe3tN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjeZ33ykSrNI3ptRTH2B+5KFjGBjpUYnEOnTuFsquxV3ArRIvJyUIUetW/rp9CKSCCoN4VjrtufGxk+xMoxwOi52Ek1jTIa4T9uWSiyo9tPJtWN0bJUeCiNlSxo0Uf9OpFhoPRKB7RTYDPS8l4n/ee3EhFd+ymScGCrJdFGYcGQilL2OekxRYvjIEkwUs7ciMsAKE2MDmtkSiCwTbz6BRdI4rXgXlfO7s3L1Ok+nAIdwBCfgwSVU4RZqUAcCD/ACr/DmPDvvzofzOW1dcvKZA5iB8/ULqrqV8Q== x AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFZKatM2u6MZlC9YW2lAm00k7dCYJMxMhhH6BW127E7d+jkv/xOlDsKIHLhzOuZd77wkSRqWyrA+jsLG5tb1T3C3t7R8cHpWPT+5lnApMOjhmsegFSBJGI9JRVDHSSwRBPGCkG0xv5n73gQhJ4+hOZQnxORpHNKQYKS21w2G5YpmW6zn1KrRM17I950oTz2s4NRfaprVABazQGpY/B6MYp5xECjMkZd+2EuXnSCiKGZmVBqkkCcJTNCZ9TSPEifTzxaEzeKGVEQxjoStScKH+nMgRlzLjge7kSE3kb28u/uX1UxU2/JxGSapIhJeLwpRBFcP513BEBcGKZZogLKi+FeIJEggrnc3aloDPdCbfj8P/yX3VtGum23YqzetVOkVwBs7BJbBBHTTBLWiBDsCAgEfwBJ6NzHgxXo23ZWvBWM2cgjUY71/5QpPk f AAACNXicbVDLSgMxFM34tr6qLt0Ei6Agw4z2YReC6MZlBdsKM0PJpJk2mMwMSUYsYb7Gj/Ab3OrKhQtB3PoLpo+FWg8EDuecm3s5YcqoVI7zas3Mzs0vLC4tF1ZW19Y3iptbLZlkApMmTlgibkIkCaMxaSqqGLlJBUE8ZKQd3l4M/fYdEZIm8bUapCTgqBfTiGKkjNQpnvp9pPQgh6dQ+6PvPNELA+3YTqVerh0dOnbFcevlY0Pq9ZNytZLDKN/3Q67v84NOsWSCI8Bp4k5ICUzQ6BTf/W6CM05ihRmS0nOdVAUaCUUxI3nBzyRJEb5FPeIZGiNOZKBHd+VwzyhdGCXCvFjBkfpzQiMu5YCHJsmR6su/3lD8z/MyFZ0EmsZppkiMx4uijEGVwGFnsEsFwYoNDEFYUHMrxH0kEFam2V9bQp6bTty/DUyT1pHtVu3KVbl0dj5pZwnsgF2wD1xQA2fgEjRAE2DwAJ7AM3ixHq0368P6HEdnrMnMNvgF6+sbdw6oMA== ˆ y = f(x)

Slide 10

Slide 10 text

AAACpXicbVFda9swFJW9ry77aNY+7kUsjKVQgp04H34YlJaNvQw6aNKCbYKkyK6oJBtJLgvCP2k/aI/7J1OcPKzpLggdzr3n3KsrXHGmTRD89vwnT589f3HwsvPq9Zu3h913Rwtd1orQOSl5qW4w0pQzSeeGGU5vKkWRwJxe47uLTf76nirNSnll1hXNBCokyxlBxlHL7i+btiaJKnBmg0EwjqPp8DQYjIMwjkYOxPEsmowbmDfwM0yRKmAqmFzaHKZMOozMLUHcfm2azp7XNA4mYegs3DWKJg6Ew2A0i5qtCmP7xYlSzAqedFpKCUuVKlXTX5/CvJ9iYX82JydtjcpgZ9ntObc24GMQ7kAP7OJy2f2TrkpSCyoN4UjrJAwqk1mkDCOcuua1phUid6igiYMSCaoz276igR8ds4J5qdyRBrbsvwqLhNZrgV3lZni9n9uQ/8sltclnmWWyqg2VZNsorzk0Jdz8EVwxRYnhawcQUczNCsktUogY95MPumDRuJ2E+xt4DBbDQTgZjH9EvbPz3XYOwHvwAfRBCKbgDHwDl2AOiHfsxd65d+F/8r/7V/5iW+p7O80xeBD+8i9BGsel f = arg min f2F E ⇥ error(y, f(x)) ⇤ ( ) AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ== x AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U= y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ= y⇤ AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTEis6Xc3Lk7mzdnRGRFb6BFmo6RMu/UPInnBMXJGGklUYzu9rdCWLOtHHdb2dpeWV1bb2wUdzc2t7ZLe3tN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjeZ33ykSrNI3ptRTH2B+5KFjGBjpUYnEOnTuFsquxV3ArRIvJyUIUetW/rp9CKSCCoN4VjrtufGxk+xMoxwOi52Ek1jTIa4T9uWSiyo9tPJtWN0bJUeCiNlSxo0Uf9OpFhoPRKB7RTYDPS8l4n/ee3EhFd+ymScGCrJdFGYcGQilL2OekxRYvjIEkwUs7ciMsAKE2MDmtkSiCwTbz6BRdI4rXgXlfO7s3L1Ok+nAIdwBCfgwSVU4RZqUAcCD/ACr/DmPDvvzofzOW1dcvKZA5iB8/ULqrqV8Q== x AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFZKatM2u6MZlC9YW2lAm00k7dCYJMxMhhH6BW127E7d+jkv/xOlDsKIHLhzOuZd77wkSRqWyrA+jsLG5tb1T3C3t7R8cHpWPT+5lnApMOjhmsegFSBJGI9JRVDHSSwRBPGCkG0xv5n73gQhJ4+hOZQnxORpHNKQYKS21w2G5YpmW6zn1KrRM17I950oTz2s4NRfaprVABazQGpY/B6MYp5xECjMkZd+2EuXnSCiKGZmVBqkkCcJTNCZ9TSPEifTzxaEzeKGVEQxjoStScKH+nMgRlzLjge7kSE3kb28u/uX1UxU2/JxGSapIhJeLwpRBFcP513BEBcGKZZogLKi+FeIJEggrnc3aloDPdCbfj8P/yX3VtGum23YqzetVOkVwBs7BJbBBHTTBLWiBDsCAgEfwBJ6NzHgxXo23ZWvBWM2cgjUY71/5QpPk f AAACNXicbVDLSgMxFM34tr6qLt0Ei6Agw4z2YReC6MZlBdsKM0PJpJk2mMwMSUYsYb7Gj/Ab3OrKhQtB3PoLpo+FWg8EDuecm3s5YcqoVI7zas3Mzs0vLC4tF1ZW19Y3iptbLZlkApMmTlgibkIkCaMxaSqqGLlJBUE8ZKQd3l4M/fYdEZIm8bUapCTgqBfTiGKkjNQpnvp9pPQgh6dQ+6PvPNELA+3YTqVerh0dOnbFcevlY0Pq9ZNytZLDKN/3Q67v84NOsWSCI8Bp4k5ICUzQ6BTf/W6CM05ihRmS0nOdVAUaCUUxI3nBzyRJEb5FPeIZGiNOZKBHd+VwzyhdGCXCvFjBkfpzQiMu5YCHJsmR6su/3lD8z/MyFZ0EmsZppkiMx4uijEGVwGFnsEsFwYoNDEFYUHMrxH0kEFam2V9bQp6bTty/DUyT1pHtVu3KVbl0dj5pZwnsgF2wD1xQA2fgEjRAE2DwAJ7AM3ixHq0368P6HEdnrMnMNvgF6+sbdw6oMA== ˆ y = f(x) AAACPXicbVDNSgMxGMz6b/2revQSLEIVKbu1VXtQiiJ4VLAqdNeSTbNtaLK7JFlxCftEPoTP4FE9efAmXr2a1h60OhAYZr7J9zF+zKhUtv1kjY1PTE5Nz8zm5uYXFpfyyyuXMkoEJg0csUhc+0gSRkPSUFQxch0LgrjPyJXfO+77V7dESBqFFyqNicdRJ6QBxUgZqZU/cbtI6TSDB1C7g++aouN72i7Z1Vplr7xtl6q2U6vsGFKr7Vd2qxkMsqLrc32XbcJDmN7orayVL5jAAPAvcYakAIY4a+Vf3XaEE05ChRmSsunYsfI0EopiRrKcm0gSI9xDHdI0NEScSE8P7svghlHaMIiEeaGCA/VnQiMuZcp9M8mR6spRry/+5zUTFex7moZxokiIvxcFCYMqgv3uYJsKghVLDUFYUHMrxF0kEFam4V9bfN7vxBlt4C+5LJec3VL1vFKoHw3bmQFrYB0UgQP2QB2cgjPQABjcg0fwDF6sB+vNerc+vkfHrGFmFfyC9fkFIG+q9w== ˆ y = f(x) > y⇤ AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTEis6Xc3Lk7mzdnRGRFb6BFmo6RMu/UPInnBMXJGGklUYzu9rdCWLOtHHdb2dpeWV1bb2wUdzc2t7ZLe3tN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjeZ33ykSrNI3ptRTH2B+5KFjGBjpUYnEOnTuFsquxV3ArRIvJyUIUetW/rp9CKSCCoN4VjrtufGxk+xMoxwOi52Ek1jTIa4T9uWSiyo9tPJtWN0bJUeCiNlSxo0Uf9OpFhoPRKB7RTYDPS8l4n/ee3EhFd+ymScGCrJdFGYcGQilL2OekxRYvjIEkwUs7ciMsAKE2MDmtkSiCwTbz6BRdI4rXgXlfO7s3L1Ok+nAIdwBCfgwSVU4RZqUAcCD/ACr/DmPDvvzofzOW1dcvKZA5iB8/ULqrqV8Q== x

Slide 11

Slide 11 text

(Uncertainty Quantification, UQ) AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ== x AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U= y AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/nicbVDJSgNBEK2JW4xb1KOXxiCIhzAjbsegF48RzALJGHo6PUmT7p6hu0cMw4Df4FXP3sSrv+LRP7GzHEzig4LHe1VU1QtizrRx3W8nt7S8srqWXy9sbG5t7xR39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIObkd94pEqzSN6bYUx9gXuShYxgY6VmOxDpU/Zw0imW3LI7Blok3pSUYIpqp/jT7kYkEVQawrHWLc+NjZ9iZRjhNCu0E01jTAa4R1uWSiyo9tPxvRk6skoXhZGyJQ0aq38nUiy0HorAdgps+nreG4n/ea3EhFd+ymScGCrJZFGYcGQiNHoedZmixPChJZgoZm9FpI8VJsZGNLMlEJnNxJtPYJHUT8veRfn87qxUuZ6mk4cDOIRj8OASKnALVagBAQ4v8ApvzrPz7nw4n5PWnDOd2YcZOF+/0HGWjQ== x⇤ AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTEis6Xc3Lk7mzdnRGRFb6BFmo6RMu/UPInnBMXJGGklUYzu9rdCWLOtHHdb2dpeWV1bb2wUdzc2t7ZLe3tN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjeZ33ykSrNI3ptRTH2B+5KFjGBjpUYnEOnTuFsquxV3ArRIvJyUIUetW/rp9CKSCCoN4VjrtufGxk+xMoxwOi52Ek1jTIa4T9uWSiyo9tPJtWN0bJUeCiNlSxo0Uf9OpFhoPRKB7RTYDPS8l4n/ee3EhFd+ymScGCrJdFGYcGQilL2OekxRYvjIEkwUs7ciMsAKE2MDmtkSiCwTbz6BRdI4rXgXlfO7s3L1Ok+nAIdwBCfgwSVU4RZqUAcCD/ACr/DmPDvvzofzOW1dcvKZA5iB8/ULqrqV8Q== x AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U= y AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U= y AAACh3ichVE7TsNAEH2Yb/glQINEExGBoAnjACGh4tNQQiCAFKLINhuwcGzLdiKFiAtQ0AaJCiQKxAE4AA0XoMgRECVINBSMnSBEEZjV7s6+mTf7dke1Dd31iBodUmdXd09vX6h/YHBoOBwZGd11rbKjiaxmGZazryquMHRTZD3dM8S+7QilpBpiTz1Z9+N7FeG4umXueFVb5EvKkakXdU3xfMieqc4WIjGKp1NJWkhEKU6USlCSnUWS03I6KjPiWwwt27QiDzjAISxoKKMEARMe+wYUuDxykEGwGcujxpjDnh7EBc7Qz9wyZwnOUBg94fWIT7kWavLZr+kGbI1vMXg6zIxiip7pjt7oie7phT7b1qoFNXwtVd7VJlfYhfD5+PbHv6wS7x6Of1h/avZQRCrQqrN2O0D8V2hNfuW0/ra9nJmqTdMNvbL+a2rQI7/ArLxrt1sic/WHHpW18I9xg767EG3v7CbicjI+v7UQW1lrtaoPE5jEDPdjCSvYwCayXP8YF6jjUgpJc1JSSjVTpY4WZwy/TFr9AnUXkR0= p(y) AAAChnichVE7TsNAEH2YXwi/AA0STUQEQhTWOCQhoYqgoSSEABI/2WYTLBzbsp1IIeICSLRQUIFEgTgAB6DhAhQcAVGCREPB2AlCFMCsdnf2zbzZtzuaYxqeT/TUIXV2dff0Rvqi/QODQ8OxkdF1z665uijptmm7m5rqCdOwRMk3fFNsOq5Qq5opNrTDpSC+UReuZ9jWmt9wxE5VrVhG2dBVn6FiY3d2L5YgOZfNUCoZJ5kom6QMO2lSckourjASWAJtW7Fjd9jGPmzoqKEKAQs++yZUeDy2oIDgMLaDJmMue0YYFzhGlLk1zhKcoTJ6yGuFT1tt1OJzUNML2TrfYvJ0mRnHFD3SDb3SA93SM338WqsZ1gi0NHjXWlzh7A2fjBff/2VVefdx8M36U7OPMrKhVoO1OyESvEJv8etH56/FhdWp5jRd0Qvrv6QnuucXWPU3/bogVi/+0KOxFv4xbtBXF+K/O+tJWcnIc4VUIr/YblUEE5jEDPdjHnksYwUlrl/BKc5wLkUkWUpL861UqaPNGcMPk/Kf1ZuQ2g== y⇤ AAACp3ichVE9T9tQFD0Y2vJRSqALUheLiCphiK5TGhIkKlSWboSPhEh8RLbzQp9wbMt+ieRG7FX/QIdOrdQBIXWFnYU/wMBPqDqCxMLQaydVxQBc6/mdd9499533ruU7MlRElwPa4NCTp8+GR0bHno+/mEhNTlVDrx3YomJ7jhfULDMUjnRFRUnliJofCLNlOWLLOliJ97c6Igil526qyBe7LXPflU1pm4qpemqmnIneRXtz2aUd6ap6l+HhHsOminQ/E2X1RlRPpSlXKhZoPq9TjqiYpwKDt2SUjJJuMBNHGv0oe6kT7KABDzbaaEHAhWLswETI3zYMEHzmdtFlLmAkk32BQ4yyts1ZgjNMZg/4v8+r7T7r8jquGSZqm09xeASs1DFLF3REV3ROx/Sbbu+t1U1qxF4inq2eVvj1iS/TGzePqlo8K3z8r3rQs0ITxcSrZO9+wsS3sHv6zqevVxuL67Pd1/SD/rD/73RJZ3wDt3Nt/1wT698e8GOxF34xbtC/Luj3g2o+ZxRyb9bm08vv+60axivMIMP9WMAyPqCMCtf/jF84wamW1Va1qlbrpWoDfc1L3AnN/AuqB50Q P(y > y⇤) = Z 1 y⇤ p(y)dy AAACwnichVHLTttAFL24vMsjlA0Sm1EjKlpF0XWANEECIWilLnk0gBSHyHYmMOBX7UkkY/ID/AALVi3qouoH9AO6abetWPAJqEsqsWHRayeoYgFcazxnztxz58xcw7NEIBEvupQn3T29ff0Dg0+HhkdGU2PPNgO34Zu8ZLqW628besAt4fCSFNLi257Pdduw+JZxsBLvbzW5HwjXeS9Dj1dsfdcRdWHqkqhqakGzdblnGNHbVlnLhEzLHGkZFi6GO68qC5pwZDUi2NohWJchowSz5krmTYcvWS2sptKYLRbyOJtjmEUs5DBPYA7VolpkKjFxpKETq27qG2hQAxdMaIANHByQhC3QIaCvDCogeMRVICLOJySSfQ4tGCRtg7I4ZejEHtB/l1blDuvQOq4ZJGqTTrFo+KRkMIXn+AWv8Ad+xUu8ubdWlNSIvYQ0G20t96qjxxMb14+qbJol7P1XPehZQh0KiVdB3r2EiW9htvXNw5Orjfn1qegFfsI/5P8jXuB3uoHT/Gt+XuPrpw/4McgLvRg16LYL7H6wmcuq+ezM2mx6abnTqn6YhOcwTf14DUvwDlahRPXP4Cf8gt/KG2Vf+aAE7VSlq6MZhzuhHP0DArmnyA== E[ y | y > y⇤] = Z 1 y⇤ y · p(y)dy Probability of improvement (PI) Expected Improvement (EI) Upper Confidence Bound (UCB) (UQ)

Slide 12

Slide 12 text

( ) AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y

Slide 13

Slide 13 text

( ) AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y

Slide 14

Slide 14 text

( ) AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y ‣ (= ) (x , x ) y ( )

Slide 15

Slide 15 text

( ) AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y ‣ (= ) (x , x ) y ( ) ‣ (x , x ) ( ) y (x , x )

Slide 16

Slide 16 text

AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYqWS4FQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkCsAOP5g== f AAAChHichVHLTsJAFD3UF+ID1I2JGyLBuDBkUHzEhSG6cclDHgkS0tYBG0rbtIUEiT+gW40LV5q4MH6AH+DGH3DBJxiXmLhx4aU0MUrE20znzJl77pyZKxmqYtmMtT3C0PDI6Jh33DcxOTXtD8zMZi29bso8I+uqbuYl0eKqovGMrdgqzxsmF2uSynNSda+7n2tw01J07cBuGrxYEyuaUlZk0SYq2SwFQizCnAj2g6gLQnAjoQcecYgj6JBRRw0cGmzCKkRY9BUQBYNBXBEt4kxCirPPcQofaeuUxSlDJLZK/wqtCi6r0bpb03LUMp2i0jBJGUSYvbB71mHP7IG9ss8/a7WcGl0vTZqlnpYbJf/ZfPrjX1WNZhvH36qBnm2UseV4Vci74TDdW8g9fePkqpPeToVbS+yWvZH/G9ZmT3QDrfEu3yV56nqAH4m80ItRg6K/29EPsquR6EYkloyF4rtuq7xYwCKWqR+biGMfCWSoPsc5LnApjAorwpqw3ksVPK5mDj9C2PkC2GOP+Q== y AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkN+IiVuxeDoeSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVLKQnA== x1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmM9jzAxOTU94531zc0vLPoDS8t5S2+aMs/JuqqbRUm0uKpoPGcrtsqLhsnFhqTyglTfH+wXWty0FF07tNsGLzfEmqZUFVm0icqeVmKVQIhFmBPBURB1QQhupPTAI45wDB0ymmiAQ4NNWIUIi74SomAwiCujQ5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPalqOWqZTVBomKYMIsxd2z/rsmT2wV/b5Z62OU2PgpU2zNNRyo+K/WM1+/Ktq0Gzj5Fs11rONKnYcrwp5NxxmcAt5qG+ddfvZ3Uy4s8Fu2Rv5v2E99kQ30Frv8l2aZ67H+JHIC70YNSj6ux2jIB+LRLcj8XQ8lNxzW+XFGtaxSf1IIIkDpJCj+jVc4gpdwStEhC0hMUwVPK5mBT9CSH4BVtKQnQ== x2 ⾒ ( ) N = = N = = N = = 10 10 =100 Full Factorial Design

Slide 17

Slide 17 text

Fisher ( ) . (Replication) ⾒ ( ) . (Local Control) . (Randomization) Randomized Controlled Trial (Fisher ) Data Leakage

Slide 18

Slide 18 text

(or ?) UQ ⾒

Slide 19

Slide 19 text

(or ?) UQ ⾒ ( ) ⾒ ( ?) ༗઒અ෉ Herbert A. Simon Simon HA, Machine Discovery. ( ) Langley PW, Simon HA, Bradshaw G, Zytkow JM, Scienti c Discovery: Computational Explorations of the Creative Process ( ). , . (1996) , . (2001)

Slide 20

Slide 20 text

. . o -the-shelf . PDF https://itakigawa.page.link/IBISML taki

Slide 21

Slide 21 text

o -the-shelf

Slide 22

Slide 22 text

( big data ) ( ) interpolator ( ) o -the-shelf

Slide 23

Slide 23 text

KernelRidge(kernel='rbf', alpha=0.05, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=2.0) ExtraTreesRegressor(n_estimators=50) DecisionTreeRegressor()

Slide 24

Slide 24 text

KernelRidge(kernel='rbf', alpha=0.05, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=2.0) ExtraTreesRegressor(n_estimators=50) DecisionTreeRegressor()

Slide 25

Slide 25 text

KernelRidge(kernel='rbf', alpha=0.05, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=2.0) ExtraTreesRegressor(n_estimators=50) DecisionTreeRegressor()

Slide 26

Slide 26 text

KernelRidge(kernel='rbf', alpha=0.05, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=2.0) ExtraTreesRegressor(n_estimators=50) DecisionTreeRegressor()

Slide 27

Slide 27 text

KernelRidge(kernel='rbf', alpha=0.05, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=2.0) ExtraTreesRegressor(n_estimators=50) DecisionTreeRegressor() ( )

Slide 28

Slide 28 text

KernelRidge(kernel='rbf', alpha=0.05, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=0.1) KernelRidge(kernel='rbf', alpha=1e-4, gamma=2.0) ExtraTreesRegressor(n_estimators=50) DecisionTreeRegressor() ( ) / (Activity Cli s, Selectivity Cli s, )

Slide 29

Slide 29 text

(UQ) skopt.learning. ExtraTreesRegressor(n_estimators=50) skopt.learning. ExtraTreesRegressor(n_estimators=50, bootstrap=True) GaussianProcessRegressor(kernel=1*RBF(),
 alpha=1e-2) skopt.learning. RandomForestRegressor(n_estimators=50) base = ExtraTreesRegressor(n_estimators=50, 
 bootstrap=True) MapieRegressor(base, method="plus", cv=-1) GaussianProcessRegressor(kernel=1*RBF(),
 alpha=1e-5) GaussianProcessRegressor(kernel=1*RBF(),
 alpha=1e-4) MapieRegressor(base, method="plus", cv=Subsample(n_resamplings=50))

Slide 30

Slide 30 text

(>100) ( ) ( !?)

Slide 31

Slide 31 text

(>100) ( ) ( !?) ⾒ Balestriero R, Pesenti J, LeCun Y. Learning in High Dimension Always Amounts to Extrapolation. arXiv [cs.LG]. 2021. http://arxiv.org/abs/2110.09485 (interpolation) y • “Our goal in this paper is to demonstrate both theoretically and empirically for both synthetic and real data that interpolation almost surely never occurs in high-dimensional spaces (>100) regardless of the underlying intrinsic dimension of the data manifold.“ • "Those results challenge the validity of our current interpolation/ extrapolation definition as an indicator of generalization performances. "

Slide 32

Slide 32 text

/ 1/2 d (r= ) AAAC73ichVHNThRBEK4dVFZAWeBi4mXiBrJ72dQSIsTEhOhBj/ztQkLjpqenZ2mZv53p3WSdzAvwAhxMjJB4ID6AD+DFoxcOPILhCMGLidbOTiJKxJ7M9Fdf1VfzdZcVuirWiKcFY+TW7Tujxbtj4xP37k+WpqabcdCNhGyIwA2iLYvH0lW+bGilXbkVRpJ7lis3rb3ng/xmT0axCvwN3Q/ljsfbvnKU4JqoVul1s2JXzacmcyIuEhaqV8kQ2mkyn6bp1YgJO9DsBfc8zlzp6MrVXKTau7qamkwHJpqs0+W2WbGzkCnf0f1qq1TGGmbLvA7qOShDvlaC0idgYEMAArrggQQfNGEXOMT0bEMdEELidiAhLiKksryEFMZI26UqSRWc2D36tinazlmf4kHPOFML+otLb0RKE2bxBI/xHL/gR/yGP/7ZK8l6DLz0abeGWhm2JvcfrH//r8qjXcPub9WNnjU4sJR5VeQ9zJjBKcRQ33tzcL7+ZG02mcMjPCP/h3iKn+kEfu9CfFiVa29v8GORF7oxGlD973FcB835Wv1xbWF1obz8LB9VER7CI6jQPBZhGV7CCjSo/1e4hJ8FMDrGgfHOeD8sNQq5Zgb+WMbxL1/dugg= V (d) = ⇡ d 2 d 2 · d 2 ! 0 (d ! 1) https://www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture1.pdf AAAChHichVHLSsNAFD2Nr/ps1Y3gRiwVF1JutD5wIUU3LltrVdAiSZzW0DQJSVqoxR/QreLClYIL8QP8ADf+gAs/QVxWcOPC2zQgWtQbJnPmzD13zsxVbUN3PaLnkNTR2dXdE+7t6x8YHIpEh0e2XKviaCKnWYbl7KiKKwzdFDlP9wyxYztCKauG2FZLa8397apwXN0yN72aLfJlpWjqBV1TPKYy8n40RgnyY6IdyAGIIYi0Fb3HHg5gQUMFZQiY8BgbUODytwsZBJu5POrMOYx0f1/gGH2srXCW4AyF2RL/i7zaDViT182arq/W+BSDh8PKCcTpiW6pQY90Ry/08Wutul+j6aXGs9rSCns/cjKWff9XVebZw+GX6k/PHgpY8r3q7N32meYttJa+enTRyC5vxOtTdE2v7P+KnumBb2BW37SbjNi4/MOPyl74xbhB8s92tIOt2YS8kEhmkrHUatCqMMYxiWnuxyJSWEcaOa4vcIoznEvd0ow0J823UqVQoBnFt5BWPgE/Y4+x 1 AAACjnichVHNSgJRFD5Of2Y/Wm2CNpIYreQYZhFEUhuX/uQPqMjMeLPBcWaauQomvkD7aBEUBS2iB+gB2vQCLXyEaGnQpkXHcSBKsjPcud/97vnO/e49kqEqFkfsuoSx8YnJKfe0Z2Z2bt7rW1jMWnrDlFlG1lXdzEuixVRFYxmucJXlDZOJdUllOal20N/PNZlpKbp2yFsGK9XFqqYcKbLIiSpgaLNonZi8XemUfQEMoR3+YRB2QACcSOi+RyhCBXSQoQF1YKABJ6yCCBZ9BQgDgkFcCdrEmYQUe59BBzykbVAWowyR2Br9q7QqOKxG635Ny1bLdIpKwySlH4L4gvfYw2d8wFf8/LNW267R99KiWRpomVH2ni2nP/5V1WnmcPytGumZwxFs214V8m7YTP8W8kDfPL3opXdSwfYa3uIb+b/BLj7RDbTmu3yXZKnLEX4k8kIvRg0K/27HMMhuhMLRUCQZCcT2nVa5YQVWYZ36sQUxiEMCMvaLnsMVXAs+ISrsCnuDVMHlaJbgRwjxLwzik/k= 0.5 p d AAAChnichVHLSsNAFD3GV62PVt0IbopFcRVupVVxVXTjsg9rC1okidMamiYhSQta/AHBrV24UnAhfoAf4MYfcOEniEsFNy68TQOixXrDZM6cuefOmbmqbeiuR/Q8IA0ODY+MhsbC4xOTU5Ho9MyuazUcTRQ0y7Cckqq4wtBNUfB0zxAl2xFKXTVEUa1tdfaLTeG4umXueMe2KNeVqqlXdE3xmMqTnDqIxkkmP2K9IBGAOILIWNF77OMQFjQ0UIeACY+xAQUuf3tIgGAzV0aLOYeR7u8LnCLM2gZnCc5QmK3xv8qrvYA1ed2p6fpqjU8xeDisjGGRnuiW3uiR7uiFPv+s1fJrdLwc86x2tcI+iJzN5T/+VdV59nD0rerr2UMF675Xnb3bPtO5hdbVN0/ab/mN3GJria7plf1f0TM98A3M5rt2kxW5yz5+VPbCL8YNSvxuRy/YXZETq3Iym4ynN4NWhTCPBSxzP9aQxjYyKHD9Ks5xgbYUkmQpJa11U6WBQDOLHyGlvwBbQpAn 0.5 AAAChnichVHLSsNAFD2Nr1ofrboR3BRLxVWZlmpFEIpuXPZhH1BLSdKxhqZJSNJCLf6A4NYuXCm4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzJUNVLJuxnkeYmJyanvHO+ubmFxb9gaXlvKU3TZnnZF3VzaIkWlxVNJ6zFVvlRcPkYkNSeUGqHwz2Cy1uWoquHdltg5cbYk1TThRZtInKVvdilUCIRZgTwVEQdUEIbqT0wCOOUYUOGU00wKHBJqxChEVfCVEwGMSV0SHOJKQ4+xzn8JG2SVmcMkRi6/Sv0arkshqtBzUtRy3TKSoNk5RBhNkLu2d99swe2Cv7/LNWx6kx8NKmWRpquVHxX6xmP/5VNWi2cfqtGuvZxgl2HK8KeTccZnALeahvnXX72d1MuLPBbtkb+b9hPfZEN9Ba7/Jdmmeux/iRyAu9GDUo+rsdoyAfi0S3I/F0PJTcd1vlxRrWsUn9SCCJQ6SQo/o1XOIKXcErRIQtITFMFTyuZgU/Qkh+AeO5kGc= d = 2 AAAChnichVHLSsNAFD2Nr1ofrboR3BRLxVWZSrUiCEU3LvuwD6ilJOm0hqZJSNJCLf6A4NYuXCm4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzJUNVLJuxnkeYmJyanvHO+ubmFxb9gaXlnKU3TZlnZV3VzYIkWlxVNJ61FVvlBcPkYkNSeV6qHw728y1uWoquHdttg5caYk1Tqoos2kRlKvuxciDEIsyJ4CiIuiAEN5J64BEnqECHjCYa4NBgE1YhwqKviCgYDOJK6BBnElKcfY5z+EjbpCxOGSKxdfrXaFV0WY3Wg5qWo5bpFJWGScogwuyF3bM+e2YP7JV9/lmr49QYeGnTLA213Cj7L1YzH/+qGjTbOP1WjfVso4pdx6tC3g2HGdxCHupbZ91+Zi8d7mywW/ZG/m9Yjz3RDbTWu3yX4unrMX4k8kIvRg2K/m7HKMhtRaI7kVgqFkocuK3yYg3r2KR+xJHAEZLIUv0aLnGFruAVIsK2EB+mCh5Xs4IfISS+AOf5kGk= d = 4 AAAChHichVHLSsNAFD2Nr/ps1Y3gRiwVF1JutD5wIUU3LltrVdAiSZzW0DQJSVqoxR/QreLClYIL8QP8ADf+gAs/QVxWcOPC2zQgWtQbJnPmzD13zsxVbUN3PaLnkNTR2dXdE+7t6x8YHIpEh0e2XKviaCKnWYbl7KiKKwzdFDlP9wyxYztCKauG2FZLa8397apwXN0yN72aLfJlpWjqBV1TPKYy8n40RgnyY6IdyAGIIYi0Fb3HHg5gQUMFZQiY8BgbUODytwsZBJu5POrMOYx0f1/gGH2srXCW4AyF2RL/i7zaDViT182arq/W+BSDh8PKCcTpiW6pQY90Ry/08Wutul+j6aXGs9rSCns/cjKWff9XVebZw+GX6k/PHgpY8r3q7N32meYttJa+enTRyC5vxOtTdE2v7P+KnumBb2BW37SbjNi4/MOPyl74xbhB8s92tIOt2YS8kEhmkrHUatCqMMYxiWnuxyJSWEcaOa4vcIoznEvd0ow0J823UqVQoBnFt5BWPgE/Y4+x 1 AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCKDQTEuDNGNSx7ySJCQtgzYUNqmLSRI/AETt7JwpYkL4wf4AW78ARd8gnGJiRsXXkoTo0S8zXTOnLnnzpm5kqEqls1YzyNMTE5Nz3hnfXPzC4v+wNJyztKbpsyzsq7qZkESLa4qGs/aiq3ygmFysSGpPC/VDwf7+RY3LUXXju22wUsNsaYpVUUWbaIylf1YORBiEeZEcBREXRCCG0k98IgTVKBDRhMNcGiwCasQYdFXRBQMBnEldIgzCSnOPsc5fKRtUhanDJHYOv1rtCq6rEbrQU3LUct0ikrDJGUQYfbC7lmfPbMH9so+/6zVcWoMvLRploZabpT9F6uZj39VDZptnH6rxnq2UcWu41Uh74bDDG4hD/Wts24/s5cOdzbYLXsj/zesx57oBlrrXb5L8fT1GD8SeaEXowZFf7djFOS2ItGdSCwVCyUO3FZ5sYZ1bFI/4kjgCElkqX4Nl7hCV/AKEWFbiA9TBY+rWcGPEBJf6hqQag== d > 4 AAACjnichVHNSgJRFD5Of2Y/Wm2CNpIYreQoZhFEUhuX/uQPqMjMdLPBcWaauQomvkD7aBEUBS2iB+gB2vQCLXyEaGnQpkXHcSBKsjPcud/97vnO/e49kqEqFkfsuoSx8YnJKfe0Z2Z2bt7rW1jMWXrDlFlW1lXdLEiixVRFY1mucJUVDJOJdUlleam239/PN5lpKbp2wFsGK9fFqqYcKbLIiSpiaKNknZi8HelUfAEMoR3+YRB2QACcSOq+RyjBIeggQwPqwEADTlgFESz6ihAGBIO4MrSJMwkp9j6DDnhI26AsRhkisTX6V2lVdFiN1v2alq2W6RSVhklKPwTxBe+xh8/4gK/4+Wettl2j76VFszTQMqPiPVvOfPyrqtPM4fhbNdIzhyPYsr0q5N2wmf4t5IG+eXrRy2yng+01vMU38n+DXXyiG2jNd/kuxdKXI/xI5IVejBoU/t2OYZCLhMKxUDQVDcT3nFa5YQVWYZ36sQlxSEASsvaLnsMVXAs+ISbsCLuDVMHlaJbgRwiJL6Jhk8c= 0.5 p 2 AAACjnichVHNSgJRFD5Of2Y/Wm2CNpIYreQYZhFEUhuX/uQPqMjMeLPBcWaauQomvkD7aBEUBS2iB+gB2vQCLXyEaGnQpkXHcSBKsjPcud/97vnO/e49kqEqFkfsuoSx8YnJKfe0Z2Z2bt7rW1jMWnrDlFlG1lXdzEuixVRFYxmucJXlDZOJdUllOal20N/PNZlpKbp2yFsGK9XFqqYcKbLIiSpgaLNonZi8XemUfQEMoR3+YRB2QACcSOi+RyhCBXSQoQF1YKABJ6yCCBZ9BQgDgkFcCdrEmYQUe59BBzykbVAWowyR2Br9q7QqOKxG635Ny1bLdIpKwySlH4L4gvfYw2d8wFf8/LNW267R99KiWRpomVH2ni2nP/5V1WnmcPytGumZwxFs214V8m7YTP8W8kDfPL3opXdSwfYa3uIb+b/BLj7RDbTmu3yXZKnLEX4k8kIvRg0K/27HMMhuhMLRUCQZCcT2nVa5YQVWYZ36sQUxiEMCMvaLnsMVXAs+ISrsCnuDVMHlaJbgRwjxLwzik/k= 0.5 p d !? Unit Cube in Unit Ball AAAChHichVHLSsNAFD2Nr/ps1Y3gRiwVF1JutD5wIUU3LltrVdAiSZzW0DQJSVqoxR/QreLClYIL8QP8ADf+gAs/QVxWcOPC2zQgWtQbJnPmzD13zsxVbUN3PaLnkNTR2dXdE+7t6x8YHIpEh0e2XKviaCKnWYbl7KiKKwzdFDlP9wyxYztCKauG2FZLa8397apwXN0yN72aLfJlpWjqBV1TPKYy8n40RgnyY6IdyAGIIYi0Fb3HHg5gQUMFZQiY8BgbUODytwsZBJu5POrMOYx0f1/gGH2srXCW4AyF2RL/i7zaDViT182arq/W+BSDh8PKCcTpiW6pQY90Ry/08Wutul+j6aXGs9rSCns/cjKWff9XVebZw+GX6k/PHgpY8r3q7N32meYttJa+enTRyC5vxOtTdE2v7P+KnumBb2BW37SbjNi4/MOPyl74xbhB8s92tIOt2YS8kEhmkrHUatCqMMYxiWnuxyJSWEcaOa4vcIoznEvd0ow0J823UqVQoBnFt5BWPgE/Y4+x 1 AAAChXichVHLSsNAFD2Nr1pfVTeCm2KpuLHcSFFxoUU3LvuwWqhFkjjVYJqEJC1o8QfErbpwpeBC/AA/wI0/4KKfIC4ruHHhbRoQFfWGyZw5c8+dM3NV29Bdj6gZkrq6e3r7wv2RgcGh4ZHo6Nima9UcTRQ0y7Ccoqq4wtBNUfB0zxBF2xFKVTXElnqw1t7fqgvH1S1zwzu0Rbmq7Jl6RdcUj6ncsrwTjVOS/Ij9BHIA4ggiY0XvsY1dWNBQQxUCJjzGBhS4/JUgg2AzV0aDOYeR7u8LHCPC2hpnCc5QmD3g/x6vSgFr8rpd0/XVGp9i8HBYGUOCnuiWWvRId/RM77/Wavg12l4OeVY7WmHvjJxM5N/+VVV59rD/qfrTs4cKFn2vOnu3faZ9C62jrx9dtPJLuURjmq7phf1fUZMe+AZm/VW7yYrc5R9+VPbCL8YNkr+34yfYnEvK88lUNhVPrwatCmMSU5jhfiwgjXVkUOD6FZziDOdSnzQrpaT5TqoUCjTj+BLSygfo4Y/5 > 1 !? ( ⾒) 0

Slide 33

Slide 33 text

/ 2/2 Bronstein MM, Bruna J, Cohen T, Veličković P. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv [cs.LG]. 2021. http://arxiv.org/abs/2104.13478 for all AAAConichVG7SgNBFD1Z3/EVtRFECEbFKkwkqKQK2ohVHkaFJIbddRKX7IvdSUCDlZ0/YGGlYCF2WvgBNv6ART5BLBVsLLzZLAQN6l1m58yZe+6cmavYuuYKxpoBqae3r39gcCg4PDI6Nh6amNxxrZqj8pxq6Zazp8gu1zWT54QmdL5nO1w2FJ3vKtWN1v5unTuuZpnb4sjmRUOumFpZU2VBVCk0W04UDFkcKkojc7J/EC4IK9whSqEIizIvwt0g5oMI/EhZoQcUcAALKmowwGFCENYhw6UvjxgYbOKKaBDnENK8fY4TBElboyxOGTKxVfpXaJX3WZPWrZqup1bpFJ2GQ8owFtgzu2Fv7Indshf2+Wuthlej5eWIZqWt5XZp/Gw6+/GvyqBZ4LCj+tOzQBlrnleNvNse07qF2tbXj8/fsonMQmORXbFX8n/JmuyRbmDW39XrNM9c/OFHIS/0YtSg2M92dIOd5WhsJRpPxyPJdb9Vg5jBHJaoH6tIYhMp5Kj+KW5wh3tpXtqS0lK2nSoFfM0UvoVU+AKNf5vS f : Rd ! R AAACmnichVHLLgRBFD3T3u9BJBIWExOPhUxqRBCrCRtiM8a8EsOkuxUq+pXumgk68wN+wMKKxAIf4ANs/ICFTxBLEhsLd3o6EQS3U12nTt1z61RdzTGEJxl7jChNzS2tbe0dnV3dPb190f6BvGdXXJ3ndNuw3aKmetwQFs9JIQ1edFyumprBC9rBcn2/UOWuJ2wrK48cvmWqe5bYFboqiSpHhw6nDydjJWHFSqYq9zXNz9S2d8rROEuwIGI/QTIEcYSRtqO3KGEHNnRUYILDgiRsQIVH3yaSYHCI24JPnEtIBPscNXSStkJZnDJUYg/ov0erzZC1aF2v6QVqnU4xaLikjGGcPbAr9sLu2Q17Yu+/1vKDGnUvRzRrDS13yn0nwxtv/6pMmiX2P1V/epbYxULgVZB3J2Dqt9Ab+urx6cvGYmbcn2AX7Jn8n7NHdkc3sKqv+uU6z5z94UcjL/Ri1KDk93b8BPmZRHIuMbs+G08tha1qxwjGMEX9mEcKK0gjR/V9nOMaN8qosqSsKmuNVCUSagbxJZTsB6MZmAU= x, x0 2 Rd -Lipschitz AAACqHichVFNLwNRFD0d39/FRmIz0fhM2ryKIFYNGwuL+qgSFZkZr0y8zoyZ16a0fgB/wMKKxEIsLLG28Qcs/ASxJLGxcDudRBDcybx73nn33Dlvru4I05OMPYaUmtq6+obGpuaW1rb2jnBn17Jn512Dpwxb2O6KrnlcmBZPSVMKvuK4XMvpgqf1nZnKebrAXc+0rSW55/D1nLZlmVnT0CRRG+FIOTtUHI7SMjhcVjOC73pCs6Q6p2bKajFaHKRMVSzG/FB/gngAIggiaYevkcEmbBjIIwcOC5KwgAaPnjXEweAQt44ScS4h0z/nOEAzafNUxalCI3aH1i3arQWsRftKT89XG/QVQa9LShX97IFdsBd2zy7ZE3v/tVfJ71HxskdZr2q5s9Fx1LP49q8qR1li+1P1p2eJLCZ9ryZ5d3ymcgujqi/sH78sTi30lwbYGXsm/6fskd3RDazCq3E+zxdO/vCjkxf6YzSg+Pdx/ATLo7H4eGxsfiySmA5G1Yhe9GGI5jGBBGaRRIr6H+IKN7hVRpSkklZWq6VKKNB040so+gci3ZxP |f(x) f(x0)| 6 Lkx x0k AAAChHichVG7SgNBFD1ZNcZ31EawCQbFQsJE4wMLCdpYWJjERCGK7K6TOLjZXXYngRj8AW0VCysFC/ED/AAbf8AinyCWEWwsvNksiAb1LrNz5sw9d87M1WxDuJKxekDp6OwKdod6evv6BwaHwsMjOdcqOzrP6pZhOTua6nJDmDwrhTT4ju1wtaQZfFs7Wmvub1e44wrL3JJVm++V1KIpCkJXJVGpjf1wlMWYF5F2EPdBFH5sWuEH7OIAFnSUUQKHCUnYgAqXvjziYLCJ20ONOIeQ8PY5TtBL2jJlccpQiT2if5FWeZ81ad2s6XpqnU4xaDikjGCSPbM71mBP7J69sI9fa9W8Gk0vVZq1lpbb+0OnY5n3f1UlmiUOv1R/epYoYMnzKsi77THNW+gtfeX4spFZTk/WptgNeyX/16zOHukGZuVNv03x9NUffjTyQi9GDYr/bEc7yM3G4guxRCoRTa76rQphHBOYpn4sIol1bCJL9TnOcI4LJajMKHPKfCtVCfiaUXwLZeUTeMOPzA== L Donoho DL, High-dimensional data analysis: The curses and blessings of dimensionality. Plenary Lecture, AMS National Meeting on Mathematical Challenges of the 21st Century. 2000. (Lipschitz ) ⾒ ε ( /ε)d Sobolev class d= 100 d= 10 =100

Slide 34

Slide 34 text

Underspecification Rashomon ( ) CV Underspeci cation ( specify ) D’Amour et al., Underspecification Presents Challenges for Credibility in Modern Machine Learning. J Mach Learn Res, 2022; 23: 1-61. https://ai.googleblog.com/2021/10/how-underspecification-presents.html

Slide 35

Slide 35 text

Underspecification Rashomon Underspeci cation ( specify ) specify

Slide 36

Slide 36 text

Underspecification Rashomon Underspeci cation ( specify ) specify (Underspeci cation) α

Slide 37

Slide 37 text

2 ( big data ) ( )

Slide 38

Slide 38 text

2 ( big data ) ( )

Slide 39

Slide 39 text

Kernel Ridge (RBF) Neural Network (MLP) Gradient Boosted Trees SVR (RBF) Gaussian Process (RBF) Random Forest Nearest Neighbors Decision Tree ⾒ Nearest Neighbor (Neural Network )

Slide 40

Slide 40 text

= if-then AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGZiRVNvh8rijIXqiIrkThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOslho= X2  ✓1 yes no AAAClnichVHLSsNAFD3Gd3201Y3gplgUV2UiRcWFFEV02YfVgpWQxLENpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxGUFNy68TQOiot4wmTNn7rlzZq7mmIYnGGt0SJ1d3T29ff2hgcGh4XAkOrLh2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvanvLrf3NGnc9w7bWxaHDtytqyTJ2DV0VRCmRaEGRY0WT78eKosyFqswokThLMD9iP4EcgDiCSNuRexSxAxs6qqiAw4IgbEKFR98WZDA4xG2jTpxLyPD3OY4RIm2VsjhlqMTu0b9Eq62AtWjdqun5ap1OMWm4pIxhkj2xW9Zkj+yOPbP3X2vV/RotL4c0a20td5TwyVju7V9VhWaB8qfqT88Cu5j3vRrk3fGZ1i30tr52dNrMLWQn61Pskr2Q/wvWYA90A6v2ql9lePbsDz8aeaEXowbJ39vxE2zMJOTZRDKTjKeWglb1YRwTmKZ+zCGFNaSRp/oHOMc1bqQxaVFakVbbqVJHoBnFl5DSHzOelho= X1  ✓2 yes no Blue AAAClnichVHLSsNAFD2N7/qquim4KZaKqzItRcWFiCK6rNZqoZWQxGkbTJOYTCta/AF/wIW4UFARP8APcOMPuOgniMsKblx4mwZExXrDZM6cuefOmbmqbeiuYKwRkLq6e3r7+geCg0PDI6OhsfFt16o6Gs9qlmE5OVVxuaGbPCt0YfCc7XClohp8R91fae3v1Ljj6pa5JY5svltRSqZe1DVFECWHxnJyMlIw+EGkIMpcKHJKDkVZnHkR+Q0SPojCj7QVekABe7CgoYoKOEwIwgYUuPTlkQCDTdwu6sQ5hHRvn+MEQdJWKYtThkLsPv1LtMr7rEnrVk3XU2t0ikHDIWUEMfbM7liTPbF79sI+/qxV92q0vBzRrLa13JZHT8OZ939VFZoFyl+qjp4Fipj3vOrk3faY1i20tr52fNbMLGzG6tPsir2S/0vWYI90A7P2pl1v8M3zDn5U8kIvRg1K/GzHb7CdjCdm46mNVHRp2W9VPyYxhRnqxxyWsI40slT/EBe4wa0UlhalVWmtnSoFfM0EvoWU/gQ6DJYd X2  ✓4 yes no Red AAAClnichVHLSsNAFD3GV62vVjeCm2JRXJWJ+MKFFEV0WVurBSshiVMNTZOYTCta/AF/wIW4UFARP8APcOMPuOgniEsFNy68SQOiot4wmTNn7rlzZq7mmIYnGGu0SK1t7R2dka5od09vX38sPrDu2VVX53ndNm23oKkeNw2L54UhTF5wXK5WNJNvaOVFf3+jxl3PsK01ceDwrYq6YxklQ1cFUUosXlDkRNHke4mi2OVCVaaUWJKlWBCJn0AOQRJhZOzYHYrYhg0dVVTAYUEQNqHCo28TMhgc4rZQJ84lZAT7HEeIkrZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHaX/eCj39q+qQrPA7qfqT88CJcwGXg3y7gSMfwu9qa8dnrzk5rKj9TF2wZ7J/zlrsHu6gVV71S9Xefb0Dz8aeaEXowbJ39vxE6xPpOTp1OTqZDK9ELYqgmGMYJz6MYM0VpBBnurv4wxXuJaGpHlpSVpupkotoWYQX0LKfAA5/pYd X1  ✓5 yes no Red AAAClnichVHLSsNAFD3Gd321uhHcFIviqkykVHEhRRFd9mG1YCUkcWyDaRKTaUWLP+APuBAXCiriB/gBbvwBF/0EcVnBjQtv04CoqDdM5syZe+6cmas5puEJxhodUmdXd09vX39oYHBoeCQcGd3w7Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tb3l1v5mjbueYVvr4tDh2xW1ZBm7hq4KopRwpKDI0aLJ96NFUeZCVZJKOMbizI/oTyAHIIYg0nb4HkXswIaOKirgsCAIm1Dh0bcFGQwOcduoE+cSMvx9jmOESFulLE4ZKrF79C/RaitgLVq3anq+WqdTTBouKaOYYk/sljXZI7tjz+z911p1v0bLyyHNWlvLHWXkZDz39q+qQrNA+VP1p2eBXcz7Xg3y7vhM6xZ6W187Om3mFrJT9Wl2yV7I/wVrsAe6gVV71a8yPHv2hx+NvNCLUYPk7+34CTZm43IynsgkYqmloFV9mMAkZqgfc0hhDWnkqf4BznGNG2lcWpRWpNV2qtQRaMbwJaT0Bzwelh4= X1  ✓6 yes no Red Blue AAAClnichVHLSsNAFD3GV3221Y3gplgUV2WiRcWFFEV0Wa3VgpWQxKmGpklMphUt/oA/4EJcKKiIH+AHuPEHXPQTxKWCGxfepAFRUW+YzJkz99w5M1dzTMMTjDVapNa29o7OSFd3T29ffzQWH1j37Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tPKCv79R465n2NaaOHD4VkXdsYySoauCKCUWLyhyomjyvURR7HKhKpNKLMlSLIjETyCHIIkwsnbsDkVsw4aOKirgsCAIm1Dh0bcJGQwOcVuoE+cSMoJ9jiN0k7ZKWZwyVGLL9N+h1WbIWrT2a3qBWqdTTBouKRMYZY/shr2wB3bLntj7r7XqQQ3fywHNWlPLHSV6PJR7+1dVoVlg91P1p2eBEmYCrwZ5dwLGv4Xe1NcOT15ys6uj9TF2wZ7J/zlrsHu6gVV71S9X+OrpH3408kIvRg2Sv7fjJ1ifSMlTqfRKOpmZD1sVwTBGME79mEYGy8giT/X3cYYrXEtD0py0KC01U6WWUDOILyFlPwA1vpYb X1  ✓3 yes no Red AAAClnichVHLSsNAFD3Gd321uhHcFIviqkykWHEhRRFd9mG1YCUkcWyDaRKTaUWLP+APuBAXCiriB/gBbvwBF/0EcVnBjQtv04CoqDdM5syZe+6cmas5puEJxhodUmdXd09vX39oYHBoeCQcGd3w7Kqr87xum7Zb0FSPm4bF88IQJi84Llcrmsk3tb3l1v5mjbueYVvr4tDh2xW1ZBm7hq4KopRwpKDI0aLJ96NFUeZCVZJKOMbizI/oTyAHIIYg0nb4HkXswIaOKirgsCAIm1Dh0bcFGQwOcduoE+cSMvx9jmOESFulLE4ZKrF79C/RaitgLVq3anq+WqdTTBouKaOYYk/sljXZI7tjz+z911p1v0bLyyHNWlvLHWXkZDz39q+qQrNA+VP1p2eBXcz7Xg3y7vhM6xZ6W187Om3mFrJT9Wl2yV7I/wVrsAe6gVV71a8yPHv2hx+NvNCLUYPk7+34CTZm4/JcPJFJxFJLQav6MIFJzFA/kkhhDWnkqf4BznGNG2lcWpRWpNV2qtQRaMbwJaT0Bz4+lh8= X1  ✓7 yes no Blue Blue if x2 ≤ θ1 then if x1 ≤ θ2 then return Blue else if x2 ≤ θ4 then return Red else if x1 ≤ θ5 then return Red else if x1 ≤ θ6 then return Blue else return Red else if x1 ≤ θ3 then if x2 ≤ θ7 then return Blue else return Blue else return Red AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CUMugjWVE8wHJEfY2e8mS3b1jd08IR36CrdZ2YuuvsfSfuLlcYRIfDDzem2FmXhBzpo3rfjuFjc2t7Z3ibmlv/+DwqHx80tZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNzN/c4zVZpF8slMY+oLPJIsZAQbKz12B7VBueJW3QxonXg5qUCO5qD80x9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n2akzdGGVIQojZUsalKl/J1IstJ6KwHYKbMZ61ZuL/3m9xIQ3fspknBgqyWJRmHBkIjT/Gw2ZosTwqSWYKGZvRWSMFSbGprO0JRAzm4m3msA6adeq3lW1/lCvNG7zdIpwBudwCR5cQwPuoQktIDCCF3iFNyd13p0P53PRWnDymVNYgvP1C4sglCA= X2 AAAB+XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzQOSJcxOZpMh81hmZoWw5BO86tmbePVrPPonTpI9mMSChqKqm+6uKOHMWN//9gpr6xubW8Xt0s7u3v5B+fCoaVSqCW0QxZVuR9hQziRtWGY5bSeaYhFx2opGd1O/9Uy1YUo+2XFCQ4EHksWMYOukx3Yv6JUrftWfAa2SICcVyFHvlX+6fUVSQaUlHBvTCfzEhhnWlhFOJ6VuamiCyQgPaMdRiQU1YTY7dYLOnNJHsdKupEUz9e9EhoUxYxG5ToHt0Cx7U/E/r5Pa+CbMmExSSyWZL4pTjqxC079Rn2lKLB87golm7lZEhlhjYl06C1siMXGZBMsJrJLmRTW4ql4+XFZqt3k6RTiBUziHAK6hBvdQhwYQGMALvMKbl3nv3of3OW8tePnMMSzA+/oFiY2UHw== X1 AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSTayFoyRO3IiMAtEDUfAibYQfoQInYIACLdCAgg4csQoS2PiVQQQCJnJV6CJnIWLuPoVzCKC2hVkUMyRkm/iv46rssTqunZq2q1bwFBWHhcoIxMgLuScD8kweyCv5/LNW163heOngLA+11KyFLlZyH/+qNJw5NL5VYz1zOIVd1ytD76bLOLdQhvr22dUgl8zGuuvklryh/xvSJ094A739rtxlaLY3xo+MXvDFsEHi73aMgsJmXNyOJzKJaGrfa5UfVmENNrAfO5CCI0hD3u3DJfTgWggKW0JS2BumCj5Psww/Qjj8Ak3rksg= ✓1 AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRAooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4V4NLYTTWQS4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXtoWksD9KFTyuZhV+hHD0BVALksk= ✓2 AAACi3ichVG7SgNBFL1ZXzEaE7URbIIhYhVmNagEi6AIlnmYByQh7K5jMmRf7E4CMfgDljYWsVGwED/AD7DxByzyCWIZwcbCu5sF0WC8y+ycOXPPnTNzZVNlNiek7xMmJqemZ/yzgbn54EIovLhUsI2WpdC8YqiGVZIlm6pMp3nOuEpLpkUlTVZpUW4eOPvFNrVsZujHvGPSqibVdXbKFIkjVarwBuVSLVELR0mcuBEZBaIHouBF2gg/QgVOwAAFWqABBR04YhUksPErgwgETOSq0EXOQsTcfQrnEEBtC7MoZkjINvFfx1XZY3VcOzVtV63gKSoOC5URiJEXck8G5Jk8kFfy+WetrlvD8dLBWR5qqVkLXazkPv5VaThzaHyrxnrmcAq7rleG3k2XcW6hDPXts6tBLpmNddfJLXlD/zekT57wBnr7XbnL0GxvjB8ZveCLYYPE3+0YBYXNuLgdT2QS0dS+1yo/rMIabGA/diAFR5CGvNuHS+jBtRAUtoSksDdMFXyeZhl+hHD4BVRLkss= ✓4 AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQfIRYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixPS9wgTk1PTM95Z39y8fyEQXFzKW3rLlGlO1hXdLEqiRRWm0RxnXKFFw6SiKim0IDUP7f1Cm5oW07UT3jFoRRXrGqsxWeRIFcu8QblY3a4GwyRKnAiNgpgLwuBGSg8+QhlOQQcZWqACBQ04YgVEsPArQQwIGMhVoIuciYg5+xTOwYfaFmZRzBCRbeK/jquSy2q4tmtajlrGUxQcJipDECEv5J4MyDN5IK/k889aXaeG7aWDszTUUqMauFjJfvyrUnHm0PhWjfXMoQZ7jleG3g2HsW8hD/Xts6tBNpGJdNfJLXlD/zekT57wBlr7Xb5L00xvjB8JveCLYYNiv9sxCvKb0dhONJ6Oh5MHbqu8sAprsIH92IUkHEMKck4fLqEH14Jf2BISwv4wVfC4mmX4EcLRF1Zrksw= ✓5 AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQgoZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYS9SCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaCwRjWfi4dSB2yovrMMGbGE/diEFx5CGvNOHS+jDteAXdoSksD9KFTyuZhV+hHD0BViLks0= ✓6 AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmQQooZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYi9eCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGwnmsgkwqkDt1VeWIcN2MJ+7EIKjiENeacPl9CHa8EvxIWksD9KFTyuZhV+hHD0BVIrkso= ✓3 AAACi3ichVG7TgJBFL2sL0QR1MbEhkgwVmRQIoZYEI2JJQ95JEDI7jrAhH1ldyBB4g9Y2lhgo4mF8QP8ABt/wIJPMJaY2Fh4d9nEKBHvZnbOnLnnzpm5kqEwixMy8AhT0zOzc95538KifykQXF4pWHrblGle1hXdLEmiRRWm0TxnXKElw6SiKim0KLUO7f1ih5oW07UT3jVoVRUbGqszWeRIlSq8SblYS9SCYRIlToTGQcwFYXAjrQcfoQKnoIMMbVCBggYcsQIiWPiVIQYEDOSq0EPORMScfQrn4ENtG7MoZojItvDfwFXZZTVc2zUtRy3jKQoOE5UhiJAXck+G5Jk8kFfy+WetnlPD9tLFWRppqVELXKzlPv5VqThzaH6rJnrmUIc9xytD74bD2LeQR/rO2dUwl8xGepvklryh/xsyIE94A63zLt9laLY/wY+EXvDFsEGx3+0YB4XtaGw3Gs/Ew6kDt1VeWIcN2MJ+JCAFx5CGvNOHS+jDteAXdoSksD9KFTyuZhV+hHD0BVqrks4= ✓7 AAAB+XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzQOSJcxOZpMh81hmZoWw5BO86tmbePVrPPonTpI9mMSChqKqm+6uKOHMWN//9gpr6xubW8Xt0s7u3v5B+fCoaVSqCW0QxZVuR9hQziRtWGY5bSeaYhFx2opGd1O/9Uy1YUo+2XFCQ4EHksWMYOukx3Yv6JUrftWfAa2SICcVyFHvlX+6fUVSQaUlHBvTCfzEhhnWlhFOJ6VuamiCyQgPaMdRiQU1YTY7dYLOnNJHsdKupEUz9e9EhoUxYxG5ToHt0Cx7U/E/r5Pa+CbMmExSSyWZL4pTjqxC079Rn2lKLB87golm7lZEhlhjYl06C1siMXGZBMsJrJLmRTW4ql4+XFZqt3k6RTiBUziHAK6hBvdQhwYQGMALvMKbl3nv3of3OW8tePnMMSzA+/oFiY2UHw== X1 AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CUMugjWVE8wHJEfY2e8mS3b1jd08IR36CrdZ2YuuvsfSfuLlcYRIfDDzem2FmXhBzpo3rfjuFjc2t7Z3ibmlv/+DwqHx80tZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNzN/c4zVZpF8slMY+oLPJIsZAQbKz12B7VBueJW3QxonXg5qUCO5qD80x9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n2akzdGGVIQojZUsalKl/J1IstJ6KwHYKbMZ61ZuL/3m9xIQ3fspknBgqyWJRmHBkIjT/Gw2ZosTwqSWYKGZvRWSMFSbGprO0JRAzm4m3msA6adeq3lW1/lCvNG7zdIpwBudwCR5cQwPuoQktIDCCF3iFNyd13p0P53PRWnDymVNYgvP1C4sglCA= X2

Slide 41

Slide 41 text

⾒ d 1 ⾒ ( )

Slide 42

Slide 42 text

( ) RandomForestRegressor (n_estimators=6, max_leaf_nodes=8) 6 × DecisionTreeRegressor(max_leaf_nodes=8) = + + + + + 8 ⾒ 8 ( ) min_samples_leaf

Slide 43

Slide 43 text

( ) RandomForestRegressor (n_estimators=6, max_leaf_nodes=8) 6 × DecisionTreeRegressor(max_leaf_nodes=8) = + + + + + 8 ⾒ 8 ( ) min_samples_leaf

Slide 44

Slide 44 text

( ) RandomForestRegressor (n_estimators=6, max_leaf_nodes=8) 6 × DecisionTreeRegressor(max_leaf_nodes=8) = + + + + + 8 ⾒ 8 ( ) min_samples_leaf

Slide 45

Slide 45 text

( ) RandomForestRegressor (n_estimators=6, max_leaf_nodes=8) 6 × DecisionTreeRegressor(max_leaf_nodes=8) = + + + + + 8 ⾒ 8 ( ) min_samples_leaf

Slide 46

Slide 46 text

/ ⾒ PolyReg(1) RMSE 0.299 PolyReg(3) RMSE 0.28 PolyReg(5) RMSE 0.225 PolyReg(7) RMSE 0.113 PolyReg(10) RMSE 0.0189 PolyReg(15) RMSE 0.00737 PolyReg(20) RMSE 0.000 PolyReg(30) RMSE 0.000 ExtraTrees (no bootstrap) RMSE 0.000 ExtraTrees (bootstrap) RMSE 0.0121 Random Forest RMSE 0.012 LGBM RMSE 0.0508 95%༧ଌ۠ؒ 95%༧ଌ۠ؒ 95%༧ଌ۠ؒ 95%༧ଌ۠ؒ Problematic overfitting by polynomial regression of order k clearly overfitted but harmless (still informative)

Slide 47

Slide 47 text

Interpolator 0 ( ) ExtraTrees (no bootstrap) ExtraTrees (no bootstrap) ExtraTrees (no bootstrap) ExtraTrees (no bootstrap) Gradient Boosted Trees Gradient Boosted Trees Gradient Boosted Trees Gradient Boosted Trees

Slide 48

Slide 48 text

Interpolator Nearest Neighbor (k=1) Nearest Neighbor (k=1) Nearest Neighbor (k=1) Nearest Neighbor (k=1) Decision Tree Decision Tree Decision Tree Decision Tree 0 ( GBDT, -NN, DT )

Slide 49

Slide 49 text

Extra Trees Geurts, Ernst, Wehenkel, Extremely randomized trees. Mach Learn 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1 ExtraTreesRegressor(n_estimators=10) RandomForestRegressor(n_estimators=10) ( )

Slide 50

Slide 50 text

Local-averaging estimators Nearest Neighbor

Slide 51

Slide 51 text

Local-averaging estimators Nearest Neighbor Nearest Neighbor (X, y) (Stone , 1977) Nadaraya-Watson Attention Mechanism ICML A Tutorial on Attention in Deep Learning https://icml.cc/Conferences/ /ScheduleMultitrack?event= Histogram rules on data-dependent partitions (or data-driven histogram methods) 90 (Nobel, Ann. Statist. ( ), ; Lugosi & Nobel, Ann. Statist. (2), 1996) ( Yellow Terror) Devroye, Györ , Lugosi, A Probabilistic Theory of Pattern Recognition, . https://www.szit.bme.hu/~gyor /pbook.pdf

Slide 52

Slide 52 text

Interpolation ⾒ ( 0 or 0) Harmless over tting Benign over tting ( )

Slide 53

Slide 53 text

Interpolation ⾒ ( 0 or 0) Harmless over tting Benign over tting ( ) Hastie et al, Surprises in high-dimensional ridgeless least squares interpolation (2020) https://arxiv.org/abs/1903.08560 Muthukumar et al, Harmless interpolation of noisy data in regression (2019) https://arxiv.org/abs/1903.09139 Bartlett et al, Benign overfitting in linear regression (2019) https://arxiv.org/abs/1906.11300 Belkin et al, Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate (2018) https://arxiv.org/abs/1806.05161 AAACG3icbVDLSsNAFJ3UV62vqks3g0VaEUsivjZC0Y3uKtg20MQymUzaoZMHMxMhhHyAH+E3uNW1O3HrwqV/4rTNwloPDBzOOZd75zgRo0Lq+pdWmJtfWFwqLpdWVtfWN8qbW20RxhyTFg5ZyE0HCcJoQFqSSkbMiBPkO4x0nOHVyO88EC5oGNzJJCK2j/oB9ShGUkm9csVyiETwAtbMqgkPoMXUrIvgzf59emhk0KzCRKX0uj4GnCVGTiogR7NX/rbcEMc+CSRmSIiuoUfSThGXFDOSlaxYkAjhIeqTrqIB8omw0/FnMrinFBd6IVcvkHCs/p5IkS9E4jsq6SM5EH+9kfif142ld26nNIhiSQI8WeTFDMoQjpqBLuUES5YogjCn6laIB4gjLFV/U1scP1OdGH8bmCXto7pxWj+5Pa40LvN2imAH7IIaMMAZaIBr0AQtgMEjeAYv4FV70t60d+1jEi1o+cw2mIL2+QPP7p7D = (X0X + I) 1X0y AAACDnicbVDLSsNAFJ3UV62vqODGzWCRVoSSiK+NUHTjsoJtA20sk+m0HTqZhJmJEGL+wW9wq2t34tZfcOmfOG2zsK0HLhzOuZdzOV7IqFSW9W3kFhaXllfyq4W19Y3NLXN7pyGDSGBSxwELhOMhSRjlpK6oYsQJBUG+x0jTG96M/OYjEZIG/F7FIXF91Oe0RzFSWuqYe22PKASvYNkpOUcPyXEKnRKMO2bRqlhjwHliZ6QIMtQ65k+7G+DIJ1xhhqRs2Vao3AQJRTEjaaEdSRIiPER90tKUI59INxn/n8JDrXRhLxB6uIJj9e9FgnwpY9/Tmz5SAznrjcT/vFakepduQnkYKcLxJKgXMagCOCoDdqkgWLFYE4QF1b9CPEACYaUrm0rx/FR3Ys82ME8aJxX7vHJ2d1qsXmft5ME+OABlYIMLUAW3oAbqAIMn8AJewZvxbLwbH8bnZDVnZDe7YArG1y+Uw5p9 = (X0X)+X0y Ridgeless Ridge

Slide 54

Slide 54 text

Interpolation ⾒ ( 0 or 0) Harmless over tting Benign over tting ( ) Belkin M, Hsu D, Mitra PP. Overfitting or perfect fitting? risk bounds for classification and regression rules that interpolate. NIPS 2018. https://dl.acm.org/doi/10.5555/3327144.3327157 "Many modern machine learning models are trained to achieve zero or near-zero training error in order to obtain near-optimal (but non-zero) test error. This phenomenon of strong generalization performance for "overfitted" / interpolated classifiers appears to be ubiquitous in high-dimensional data, having been observed in deep networks, kernel machines, boosting and random forests. Their performance is consistently robust even when the data contain large amounts of label noise." Belkin M. Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation. Acta Numerica, 2021; 30: 203-248: https://doi.org/10.1017/S0962492921000039 Weyner AJ, Olson M, Bleich J, and Mease D. Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers. J Mach Learn Res. 2017; 18(48): 1-33. https://jmlr.org/papers/v18/15-240.html

Slide 55

Slide 55 text

(LSH)

Slide 56

Slide 56 text

(LSH) . ( ) ReLU = max(x, ) (= ) cf.

Slide 57

Slide 57 text

(LSH) Balestriero, Randall. "Max-Affine Splines Insights Into Deep Learning." (2021) Diss., Rice University. https://hdl.handle.net/1911/110439 Balestriero & Baraniuk. A Spline Theory of Deep Learning (ICML 2018) https://proceedings.mlr.press/v80/balestriero18b.html Balestriero et al., The Geometry of Deep Networks: Power Diagram Subdivision (NeurIPS 2019) https://arxiv.org/abs/1905.08443 . ( ) ReLU = max(x, ) (= ) cf.

Slide 58

Slide 58 text

https://www.kaggle.com/kaggle-survey-2021 State of Data Science and Machine Learning 2021 (Kaggle Survey) Q17. Which of the following ML algorithms do you use on a regular basis? Linear or Logistic Regression Decision Trees or Random Forests Gradient Boosting Machines (xgboost, lightgbm, etc) Convolutional Neural Networks Dense Neural Networks (MLPs, etc) Bayesian Approaches Recurrent Neural Networks Transformer Networks (BERT, gpt-3, etc) None or Other Generative Adversarial Networks Evolutionary Approaches 0 3,500 7,000 10,500 14,000 13,852 11,863 7,566 7,410 4,468 4,392 4,228 2,273 1,953 1,353 963 # respondents: 25,973 ( ⾒ ?)

Slide 59

Slide 59 text

ExtraTrees Random Forests ( Boosting ⾒ Quantile ) scikit-optimize https://scikit-optimize.github.io/

Slide 60

Slide 60 text

Conformal Prediction https://github.com/scikit-learn-contrib/MAPIE regressor = ExtraTreesRegressor(max_leaf_nodes=32, bootstrap=True) MapieRegressor(regressor, method="plus", cv=-1) MapieRegressor(regressor, method="plus", cv=Subsample(n_resampling s=50)) MapieRegressor(regressor, method="plus", cv=-1) MapieRegressor(regressor, method="plus", cv=Subsample(n_resampling s=50)) 95% prediction intervals 95% prediction intervals 90% prediction intervals 90% prediction intervals Jacknife+ Jacknife+ after bootstrap Jacknife+ Jacknife+ after bootstrap Conformal Prediction

Slide 61

Slide 61 text

SWED-8 SWED-3 Wang et al., Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach. (2022) https://doi.org/10.26434/chemrxiv-2022-695rj ( )

Slide 62

Slide 62 text

. . o -the-shelf . PDF https://itakigawa.page.link/IBISML taki

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

CV ( ) CV ( ) f (Xi , y i ) y i ≈ ̂ yi = f(Xi ) ( ) ⾒ ( )

Slide 65

Slide 65 text

Physics-informed ML, Geometric ML, Causal ML https://doi.org/10.1038/s42254-021-00314-5

Slide 66

Slide 66 text

( ) ( ) ⾒ ( ) ⾒ ⾒

Slide 67

Slide 67 text

( ) ( ) ⾒ ( ) ⾒ ⾒ ( Symmetry Geometric ML )

Slide 68

Slide 68 text

( ) ( ) ⾒ ( ) ⾒ ⾒ ( Symmetry Geometric ML ) ⾒ 課 https://doi.org/10.1038/s42254-021-00314-5

Slide 69

Slide 69 text

( ) X Y Y

Slide 70

Slide 70 text

( ) X Y Y

Slide 71

Slide 71 text

( ) X Y Y

Slide 72

Slide 72 text

. Two Cultures ( vs ) ‣ Data Modeling ( ) vs. Algorithmic Modeling ( ) L. Breiman Statistical Modeling: The Two Cultures ( ) + Cox Efron ‣ 20 Observational Studies (2021) + Breiman's main point is: If you want prediction, do prediction for its own sake and forget about the illusion of representing nature. (Judea Pearl)

Slide 73

Slide 73 text

. Two Cultures ( vs ) ‣ Data Modeling ( ) vs. Algorithmic Modeling ( ) L. Breiman Statistical Modeling: The Two Cultures ( ) + Cox Efron ‣ 20 Observational Studies (2021) + Breiman's main point is: If you want prediction, do prediction for its own sake and forget about the illusion of representing nature. (Judea Pearl) . p ( HARKing ) ‣ (A. Lang, ) ‣ 2019 Nature Retire statistical signi cance Don t say statistically signi cant (ASA) (2016) (2019) (800 )

Slide 74

Slide 74 text

vs

Slide 75

Slide 75 text

vs (= ) • “Theory-driven models can be wrong. But data-driven models cannot be wrong or right. Data-driven are not trying to describe an underlying reality.” David Hand, KDD2018 (Keynote Talk) http://videolectures.net/kdd2018_hand_data_science/ ⾒ ( )

Slide 76

Slide 76 text

⾒ (NP-hard ) Schrittweiser et al. Mastering Atari, Go, chess and shogi by planning with a learned model. (“MuZero”, Nature, 2020) Davies et al. Advancing mathematics by guiding human intuition with AI. (Nature, 2021) Fawzi et al. Discovering faster matrix multiplication algorithms with reinforcement learning. (“AlphaTensor”, Nature, 2022) × closed /

Slide 77

Slide 77 text

( ) ( ) ( ) ⾒ (Physics-infomed ML, Causal ML, Geometric ML, )

Slide 78

Slide 78 text

. UQ ⾒ . o -the-shelf ( ) Underspeci cation . ⾒ (Physics-informed ML, Causal ML, Geometric ML) + (Pure Math, Pure CS, ⾒ , / ) PDF https://itakigawa.page.link/IBISML taki