Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
ཧܭࢉػՊֶʹ͓͚Δ ֶͷԠ༻: ٖࣅϥϯμϜωε ਗ਼ਫ ৳ߴ (౦ژۀେֶ) ஊձ (20245݄27@౦େֶ)
Slide 2
Slide 2 text
•ཧܭࢉػՊֶͰ(૾Ҏ্ʹ)ֶͷ֓೦͕෯͘ొ •ֶͱཧܭࢉػՊֶͷڞ௨෦ͷҰͭ: ٖࣅϥϯμϜੑ ൃදͷ֓ཁ 2
Slide 3
Slide 3 text
•ཧܭࢉػՊֶͰ(૾Ҏ্ʹ)ֶͷ֓೦͕෯͘ొ •ֶͱཧܭࢉػՊֶͷڞ௨෦ͷҰͭ: ٖࣅϥϯμϜੑ •ʮ͜Ε͕͜Μͳͱ͜Ζʹڞ௨͕͋Δͷ͔ʂ(ڻ)ʯͱࢥͬͯ΄͍͠ ൃදͷ֓ཁ 3
Slide 4
Slide 4 text
•ཧܭࢉػՊֶͰ(૾Ҏ্ʹ)ֶͷ֓೦͕෯͘ొ •ֶͱཧܭࢉػՊֶͷڞ௨෦ͷҰͭ: ٖࣅϥϯμϜੑ •ʮ͜Ε͕͜Μͳͱ͜Ζʹڞ௨͕͋Δͷ͔ʂ(ڻ)ʯͱࢥͬͯ΄͍͠ •ʮงғؾʯΛհ ‣ ݫີͳఆٛূ໌ׂѪ ൃදͷ֓ཁ 4
Slide 5
Slide 5 text
ৗੜ׆ʹ͓͚Δܭࢉػͷར༻ 5
Slide 6
Slide 6 text
•ܭࢉػͷཧతͳೳྗͦͷݶքΛֶΛͬͯղ໌ (Ԡ༻ֶ) ‣ ࠷దԽΞϧΰϦζϜ ‣ ࠔੑ (ܭࢉྔԼք; ༧) ‣ άϥϑΞϧΰϦζϜ ‣ ҉߸, ֶशཧ ‣ Ϛϧίϑ࿈ ‣ ܭࢉ ‣ ྔࢠΞϧΰϦζϜ ‣ ࢄΞϧΰϦζϜ ‣ σʔλߏ ‣ etc 𝖯 ≠ 𝖭 𝖯 ཧܭࢉػՊֶ (Theoretical Computer Science) 6
Slide 7
Slide 7 text
TCSͱ(७ਮ)ֶͷܨ͕Γ 7 ରιϘϨϑෆࣜ ϥϯμϜΥʔΫͷղੳ Green—Taoͷఆཧ ऑֶशثͷϒʔεςΟϯά Kazhdanͷੑ࣭ (T) ཚԽ ޡΓగਖ਼ූ߸ Bogolyubov—Ruzsaͷิ ࠷ѱ͔࣌Βฏۉ࣌ͷؼண ପԁۂઢ҉߸ ପԁۂઢ ଟ༷ମͷCheegerఆ ނোੑωοτϫʔΫ άϥεϚϯଟ༷ମ 2-to-2༧ Hilbert’s Nullstellensatz Combinatorial Nullstellensatz ΞΠσΞΛഈआ ྫͷߏ ৽ͨͳઃఆ Connes ͷຒΊࠐΈ༧ MIP*=REఆཧ Baum—Connes༧ ηΩϡϦςΟ ฏۉ࣌ܭࢉྔ ੑ࣭ݕࠪ
Slide 8
Slide 8 text
TCSͱ(७ਮ)ֶͷܨ͕Γ 8 ରιϘϨϑෆࣜ ϥϯμϜΥʔΫͷղੳ Green—Taoͷఆཧ ऑֶशثͷϒʔεςΟϯά ཚԽ ޡΓగਖ਼ූ߸ Bogolyubov—Ruzsaͷิ ࠷ѱ͔࣌Βฏۉ࣌ͷؼண ପԁۂઢ҉߸ ପԁۂઢ ଟ༷ମͷCheegerఆ ނোੑωοτϫʔΫ άϥεϚϯଟ༷ମ 2-to-2༧ Hilbert’s Nullstellensatz Combinatorial Nullstellensatz ΞΠσΞΛഈआ ྫͷߏ ৽ͨͳઃఆ Connes ͷຒΊࠐΈ༧ MIP*=REఆཧ Baum—Connes༧ ηΩϡϦςΟ ฏۉ࣌ܭࢉྔ Kazhdanͷੑ࣭ (T) ٖࣅϥϯμϜੑ (pseudorandomness)
Slide 9
Slide 9 text
•ٖࣅཚͷੜ ‣ ཚΛ͏໘ : ϥϯμϜΥʔΫ, MCMC, ֬తޯ๏, etc. ‣ ࣮ࡍͷܭࢉػͰٖࣅཚΛͬͯΔ - : ԿΒ͔ͷؔ - ͰٖࣅཚΛͨ͘͞Μੜ ( ΛγʔυͱݺͿ) ‣ ༗໊ͳؔ : ϝϧηϯψπΠελ, ઢܗ߹ಉ๏, etc ‣ ྑ࣭ͳ(=࣍ͷग़͕༧ଌͰ͖ͳ͍)ٖࣅཚ͕ཉ͍͠ f: {0,1}32 → {0,1}32 s → f(s) → f(f(s)) → ⋯ s ٖࣅཚ 9
Slide 10
Slide 10 text
ٖࣅཚ 10 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=503M62000000001) Χ ジ ϊཧҕһձؔಛఆෳ߹؍ޫࢪઃ۠Ҭඋ๏ࢪߦنଇ ୈ176ผද (H30੍ఆ)
Slide 11
Slide 11 text
ٖࣅཚ 11 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=503M62000000001) Χ ジ ϊཧҕһձؔಛఆෳ߹؍ޫࢪઃ۠Ҭඋ๏ࢪߦنଇ ୈ176ผද (H30੍ఆ) •࣭͕ѱ͍ٖࣅཚͷࣄྫ (࣮) ‣ 2006ʹൃച͞ΕͨήʔϜιϑτʹͯʮμΠεͷ࣍ͷग़ͷۮح͕ਪଌͰ͖Δʯ ͱ͍͏க໋తͳόά͕ݟ͔ͭΓɺճऩʹࢸͬͨ.
Slide 12
Slide 12 text
•ٖࣅཚʹཉ͍͠ੑ࣭ ‣ Ұ༷ϥϯμϜͳ ʹର͠, ͕Ұ༷ϥϯμϜ - ݪཧతʹෆՄೳ ( ͕ܾ·Δͱ ܾ·Δ͔Β) s (s, f(s)) s f(s) ٖࣅϥϯμϜੑ 12
Slide 13
Slide 13 text
•ٖࣅཚʹཉ͍͠ੑ࣭ ‣ Ұ༷ϥϯμϜͳ ʹର͠, ͕Ұ༷ϥϯμϜ - ݪཧతʹෆՄೳ ( ͕ܾ·Δͱ ܾ·Δ͔Β) •ٖࣅϥϯμϜωε ‣ Ұ༷ϥϯμϜͳ ʹର͠, ͕Ұ༷ϥϯμϜͬΆ͘ݟ͑Δ ‣ Ұ༷ͱࣝผͰ͖ͳ͍Α͏ͳ s (s, f(s)) s f(s) s (s, f(s)) ٖࣅϥϯμϜੑ 13 ݅Λ؇
Slide 14
Slide 14 text
ͷࣝผ 14 01010101010101010101 01000111001111001111 ͋Δ ͔Βੜ͞Εͨ20จࣈ 𝒟 ࣝผऀ A ͬͪ͜Ұ༷ϥϯμϜ͡Όͳ͍ ͬͪ͜Ұ༷ϥϯμϜͰ͋Ζ͏ Ұ༷ ͔Βੜ͞Εͨ20จࣈ 𝒰
Slide 15
Slide 15 text
ͷࣝผ 15 01010101010101010101 01000111001111001111 ͋Δ ͔Βੜ͞Εͨ20จࣈ 𝒟 Ұ༷ ͔Βੜ͞Εͨ20จࣈ 𝒰 ࣝผऀ A ؔ : 20จࣈ 0 or 1 A ↦ ࣝผऀ ͕ ͱ Λ -ࣝผ ͢Δ A 𝒟 𝒰 ε def ⟺ Pr[A( 𝒟 ) = 1] − Pr[A( 𝒰 ) = 1] > ε
Slide 16
Slide 16 text
• Λ ʮ01010101010ʯʮ10101010101ʯͷͲͪΒ͔͕֬ Ͱग़ݱ •ࣝผऀ : ‣ 0ͱ1͕ަޓͳΒ1, ͦ͏Ͱͳ͍ͳΒ0Λग़ྗ • 0.999-ࣝผ ‣ ‣ 𝒟 1/2 A(s) A Pr[A( 𝒟 ) = 1] = 1 Pr[A( 𝒰 ) = 1] = 2/211 ≈ 0.001 ͷࣝผ (ྫ) 16
Slide 17
Slide 17 text
•ٖࣅϥϯμϜωε ‣ ੍ݶ͞ΕͨࣝผऀͷΫϥε Λߟ͑Δ (ଟ߲ࣜ࣌ؒΞϧΰϦζϜͳͲ) 𝒜 ٖࣅϥϯμϜੑ 17 ʹରͯ͠ -ٖࣅϥϯμϜ Ͱ͋Δ ҙͷ ͕ ͱ Λ -ࣝผ͠ͳ͍ 𝒟 𝒜 ε def ⟺ A ∈ 𝒜 𝒟 𝒰 ε શશೳͷࣝผऀ ੍ݶ͞Εͨࣝผऀ 011010100 ૉ൪ͷจࣈ͕1ͩʂ 0ͱ1͕ަޓ͡Όͳ͍͔Β Ұ༷ϥϯμϜ͔ͳ͊
Slide 18
Slide 18 text
•ٖࣅϥϯμϜωε ‣ ੍ݶ͞ΕͨࣝผऀͷΫϥε Λߟ͑Δ (ଟ߲ࣜ࣌ؒΞϧΰϦζϜͳͲ) 𝒜 ٖࣅϥϯμϜੑ 18 ʹରͯ͠ -ٖࣅϥϯμϜ Ͱ͋Δ ҙͷ ͕ ͱ Λ -ࣝผ͠ͳ͍ 𝒟 𝒜 ε def ⟺ A ∈ 𝒜 𝒟 𝒰 ε ✓ ܭࢉྔతٖࣅϥϯμϜੑ = ͕ޮతͳΞϧΰϦζϜͷ (ྫ: ଟ߲ࣜ࣌ؒΞϧΰϦζϜ) ✓ ߹ͤతٖࣅϥϯμϜੑ = ͕߹ͤతʹఆ·Δؔͷ (ྫ: ࣍ଟ߲ࣜ) 𝒜 𝒜 d
Slide 19
Slide 19 text
ܭࢉྔతٖࣅϥϯμϜੑ ฏۉ࣌ܭࢉྔ
Slide 20
Slide 20 text
•ܭࢉྔ: ܭࢉͷෳࡶੑ (࣌ؒ, ۭؒetc) ΛਤΔई ‣ ͕༩͑ΒΕͨͱ͖, Λܭࢉ͢ΔखؒͲΕ͘Β͍͔? x f(x) ฏۉ࣌ࠔੑ 20
Slide 21
Slide 21 text
•ܭࢉྔ: ܭࢉͷෳࡶੑ (࣌ؒ, ۭؒetc) ΛਤΔई ‣ ͕༩͑ΒΕͨͱ͖, Λܭࢉ͢ΔखؒͲΕ͘Β͍͔? •࠷ѱ࣌ܭࢉྔ: ࠷ѱͳೖྗʹର͢ΔΞϧΰϦζϜͷڍಈ ‣ ͘͝গͷίʔφʔέʔεʹӨڹ͞Ε͏Δ ‣ “pessimism of worst-case analysis” [Frieze, McDiarmid, 1986] ‣ ༧ x f(x) 𝖯 ≠ 𝖭 𝖯 ฏۉ࣌ࠔੑ 21
Slide 22
Slide 22 text
•ܭࢉྔ: ܭࢉͷෳࡶੑ (࣌ؒ, ۭؒetc) ΛਤΔई ‣ ͕༩͑ΒΕͨͱ͖, Λܭࢉ͢ΔखؒͲΕ͘Β͍͔? •࠷ѱ࣌ܭࢉྔ: ࠷ѱͳೖྗʹର͢ΔΞϧΰϦζϜͷڍಈ ‣ ͘͝গͷίʔφʔέʔεʹӨڹ͞Ε͏Δ ‣ “pessimism of worst-case analysis” [Frieze, McDiarmid, 1986] ‣ ༧ •ฏۉ࣌ܭࢉྔ: ฏۉతͳೖྗʹର͢ΔΞϧΰϦζϜͷڍಈ ‣ গͳ͍ίʔφʔέʔεʹӨڹ͞Εʹ͍͘ x f(x) 𝖯 ≠ 𝖭 𝖯 ฏۉ࣌ࠔੑ 22
Slide 23
Slide 23 text
•ؔ ͷܭࢉ͕ฏۉ࣌ࠔ ‣ Ұ༷ϥϯμϜͳ ʹରͯ͠, ͷܭࢉ͕͍͠ ‣ ྫ: 10ܻͷϥϯμϜͳೋͭͷૉͷੵͷૉҼղ͍͠ (RSA҉߸) f x f(x) ฏۉ࣌ࠔੑ 23
Slide 24
Slide 24 text
•ؔ ͷܭࢉ͕ฏۉ࣌ࠔ ‣ Ұ༷ϥϯμϜͳ ʹରͯ͠, ͷܭࢉ͕͍͠ ‣ ྫ: 10ܻͷϥϯμϜͳೋͭͷૉͷੵͷૉҼղ͍͠ (RSA҉߸) •ฏۉ࣌ࠔͳؔ ٖࣅཚੜث ‣ ʮ͍͠ʯͱ͍͏ωΨςΟϒͳੑ࣭ΛϙδςΟϒͳ݁ՌʹԠ༻ ‣ ͕ฏۉ࣌ࠔ ҙͷଟ߲ࣜ࣌ؒΞϧΰϦζϜʹͱٖͬͯࣅϥϯμϜ - Ұ༷ϥϯμϜͳ ʹରͯ͠ ͷܭࢉ͍͔͠Β f x f(x) ⇒ f ⟺ (s, f(s)) s f(s) ฏۉ࣌ࠔੑ 24 [Nisan, Wigderson, 1994]
Slide 25
Slide 25 text
҉߸ 25 •҉߸ •डͨ͠ୈࡾऀʹ͍͔ͳΔใ࿙Ε͍͚ͯͳ͍ ‣ ҉߸จʹԿΒ͔ͷ౷ܭతಛ͕͋ͬͨΒඇࣗ໌ͳใ͕࿙ΕΔ ‣ ୈࡾऀʹͱͬͯϥϯμϜͳจࣈྻʹݟ͑Δ͖ Apple 0011101000100
Slide 26
Slide 26 text
҉߸ 26 •҉߸ •डͨ͠ୈࡾऀʹ͍͔ͳΔใ࿙Ε͍͚ͯͳ͍ ‣ ҉߸จʹԿΒ͔ͷ౷ܭతಛ͕͋ͬͨΒඇࣗ໌ͳใ͕࿙ΕΔ ‣ ୈࡾऀʹͱͬͯϥϯμϜͳจࣈྻʹݟ͑Δ͖ - ୈࡾऀ੍ݶ͞ΕͨܭࢉೳྗΛ༗͢ΔͱԾఆ Apple 0011101000100
Slide 27
Slide 27 text
҉߸ 27 •҉߸ •༗໊ͳ҉߸ํࣜ ‣ RSA҉߸ (ϥϯμϜͳڊେͳೋͭͷૉͷੵͷૉҼղͷࠔੑΛԾఆ) ‣ ֨ࢠ҉߸ (ϥϯμϜͳ֨ࢠ্Ͱͷ࠷֨ࢠͷࠔੑΛԾఆ) ‣ ڀۃతͳඪ: ͷԾఆͷԼͰ҆શͳ҉߸Λ࡞Δ •ฏۉ࣌ࠔͳ 㱺 ΄ͱΜͲͷೖྗͰਖ਼͘͠ղ͚ͳ͍ 𝖯 ≠ 𝖭 𝖯 Apple 0011101000100
Slide 28
Slide 28 text
҉߸ 28 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=413M60000418002)
Slide 29
Slide 29 text
҉߸ 29 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=413M60000418002) •๏ྩͷจݴʹʮૉҼղʯʮ༗ݶମʯʮପԁۂઢʯ •େਉ͕ೝΊΕOKΒ͍͠
Slide 30
Slide 30 text
߹ͤతٖࣅϥϯμϜੑ ΤΫεύϯμʔάϥϑ
Slide 31
Slide 31 text
• : -ਖ਼ଇάϥϑ ‣ શʹଓ͍ͯ͠Δล͕ ຊ • : ୯७ϥϯμϜΥʔΫͷભҠ֬ߦྻ ‣ ୯७ϥϯμϜΥʔΫ : Ұ༷ϥϯμϜͳྡʹભҠ ‣ G d d P P(u, v) = { 1 d 0 ΤΫεύϯμʔάϥϑ 31 3-ਖ਼ଇάϥϑ ͕ลΛͳ͢ {u, v} ͦΕҎ֎
Slide 32
Slide 32 text
• : -ਖ਼ଇάϥϑ ‣ શʹଓ͍ͯ͠Δล͕ ຊ • : ୯७ϥϯμϜΥʔΫͷભҠ֬ߦྻ ‣ ୯७ϥϯμϜΥʔΫ : Ұ༷ϥϯμϜͳྡʹભҠ ‣ G d d P P(u, v) = { 1 d 0 ΤΫεύϯμʔάϥϑ 32 3-ਖ਼ଇάϥϑ ͕ลΛͳ͢ {u, v} ͦΕҎ֎ ఆٛ (ΤΫεύϯμʔάϥϑ) ભҠ֬ߦྻ ͷݻ༗ ͕ Λຬͨ͢ͱ͖ -ΤΫεύϯμʔͱ͍͏. P 1 = λ1 ≥ … ≥ λn ≥ − 1 max{|λ2 |, |λn |} ≤ λ λ
Slide 33
Slide 33 text
• : -ਖ਼ଇάϥϑ ‣ શʹଓ͍ͯ͠Δล͕ ຊ • : ୯७ϥϯμϜΥʔΫͷભҠ֬ߦྻ ‣ ୯७ϥϯμϜΥʔΫ : Ұ༷ϥϯμϜͳྡʹભҠ ‣ G d d P P(u, v) = { 1 d 0 ΤΫεύϯμʔάϥϑ 33 3-ਖ਼ଇάϥϑ ͕ลΛͳ͢ {u, v} ͦΕҎ֎ ఆٛ (ΤΫεύϯμʔάϥϑ) ભҠ֬ߦྻ ͷݻ༗ ͕ Λຬͨ͢ͱ͖ -ΤΫεύϯμʔͱ͍͏. P 1 = λ1 ≥ … ≥ λn ≥ − 1 max{|λ2 |, |λn |} ≤ λ λ ؆୯ͷͨΊৗʹਖ਼ଇੑΛԾఆ ( ରশͳͷͰ࣮ݻ༗Λͭ) P
Slide 34
Slide 34 text
•ϥϯμϜΥʔΫͷऩଋੑ ‣ άϥϑ͕͋Δ݅Λຬͨ͢ͱ ͷ ্ͷҰ༷ʹҰҙʹऩଋ ‣ ऩଋͷ͞ͲΕ͘Β͍͔? Xt V ϥϯμϜΥʔΫͱΤΫεύϯμʔ 34 ೋ෦άϥϑ্Ͱऩଋ͠ͳ͍ ඇ࿈݁ͩͱऩଋઌ͕ҰҙͰͳ͍
Slide 35
Slide 35 text
•ϥϯμϜΥʔΫͷऩଋੑ ‣ άϥϑ͕͋Δ݅Λຬͨ͢ͱ ͷ ্ͷҰ༷ʹҰҙʹऩଋ ‣ ऩଋͷ͞ͲΕ͘Β͍͔? •ΤΫεύϯμʔάϥϑ ‣ ϥϯμϜΥʔΫͷऩଋ͕͍άϥϑ Xt V ϥϯμϜΥʔΫͱΤΫεύϯμʔ 35 ೋ෦άϥϑ্Ͱऩଋ͠ͳ͍ ඇ࿈݁ͩͱऩଋઌ͕ҰҙͰͳ͍
Slide 36
Slide 36 text
•ૄͳΤΫεύϯμʔάϥϑ : ૄͳͷʹ࿈݁ੑ͕ڧ͍ ΤΫεύϯμʔͷݟͨ 36 ؆୯ʹஅͰ͖ͦ͏ அ͠ʹ͍͘
Slide 37
Slide 37 text
‣ ( ) ‣ શͯͷ -ΤΫεύϯμʔ •ఆ ʹରͯ͠ -ΤΫεύϯμʔଘࡏ͢Δ͔? ‣ ϥϯμϜʹ࡞Δͱਖ਼ͷ֬Ͱ (֬తख๏) ‣ ϥϯμϜਖ਼ଇάϥϑ •ϥϯμϜωεΛΘͣʹߏͰ͖Δ͔? (ཚ) → ∞ i → ∞ Gi λ λ < 1 λ λ = 2 d − 1 d + 0.01 ΤΫεύϯμʔάϥϑ 37 -ਖ਼ଇάϥϑͷ -ΤΫεύϯμʔͰ͋Δ d (Gi )i∈ℕ λ def ⟺ [Friedman, 2008]
Slide 38
Slide 38 text
•తͳߏ ‣ έΠϦʔάϥϑ (܈ͷ࡞༻ΛௐΔॏཁͳಓ۩) ‣ Margulisͷߏ (1973) … ‣ Lubotzky, Phillips, and Sarnak (1988) ‣ Margulis (1988) ‣ Morgenstern (1994) ‣ ࣍ ͕ಛผͳ߹ͷߏ λ = 5 2 8 < 0.9 d ΤΫεύϯμʔͷߏ 38
Slide 39
Slide 39 text
•తͳߏ ‣ έΠϦʔάϥϑ (܈ͷ࡞༻ΛௐΔॏཁͳಓ۩) ‣ Margulisͷߏ (1973) … ‣ Lubotzky, Phillips, and Sarnak (1988) ‣ Margulis (1988) ‣ Morgenstern (1994) ‣ ࣍ ͕ಛผͳ߹ͷߏ λ = 5 2 8 < 0.9 d ΤΫεύϯμʔͷߏ 39 ϥϚψδϟϯάϥϑ (“࠷దͳ”ΤΫεύϯμʔੑΛͭ) λ ≈ 2 d − 1 d
Slide 40
Slide 40 text
•߹ͤతͳߏ ‣ తͳߏͩͱײ (ͳͥΤΫεύϯμʔੑ͕Γཱͭͷ͔? )͕͍͠ ‣ Reingold, Vadhan, Wigderson (2002) - δάβάੵ ‣ Marcus, Spielman, Srinivasta (2015) - શͯͷೋ෦ϥϚψδϟϯάϥϑͷߏ - ৫Γࠞͥଟ߲ࣜ (interlacing polynomial) •ະղܾ: ࣍7ͷϥϚψδϟϯάϥϑͷߏ ΤΫεύϯμʔͷߏ (ଓ) 40
Slide 41
Slide 41 text
•ཁૉ ͷू߹ ʹର͠, ࣍ͷ ্ͷ Λߟ͑Δ ‣ ্ͷ -ਖ਼ଇΤΫεύϯμʔάϥϑ Λߟ͑Δ ‣ ΛҰ༷ϥϯμϜʹબͿ ‣ Λ࢝ͱ͢Δ͞ ͷϥϯμϜΥʔΫͷܦ༝ Λग़ྗ n V Vℓ 𝒟 V d G = (V, E) u1 u1 ℓ − 1 (u1 , …, uℓ ) ٖࣅϥϯμϜੑ 41 u1 u2 uℓ
Slide 42
Slide 42 text
ٖࣅϥϯμϜੑ 42 άϥϑ ͕ -ΤΫεύϯμʔͳΒ, ʹର͠ -ٖࣅϥϯμϜ G λ 𝒟 𝒜 = {AS : S ⊆ V} (λ/4) ෦ू߹ ʹର͠, Λ S ⊆ V AS : Vℓ → {0,1} AS (u1 , …, uℓ ) = { 1 0 {u1 , …, uℓ } ∩ S ≠ ∅ ͦΕҎ֎ ఆཧ u1 u2 uℓ S = ్தͰ ͷΛ௨ա͔ͨ͠Ͳ͏͔ AS (u1 , …, uℓ ) S
Slide 43
Slide 43 text
• ͷݩʹʮ͋ͨΓʯorʮͣΕʯ͕͋Δ ‣ গͳ͘ͱ ݸͷʮ͋ͨΓʯ͕͋Δ - Ұ༷ϥϯμϜʹҾ͍͕ͨ͋ͨΔ֬ = •ಠཱҰ༷ϥϯμϜʹ ճ͘͡ΛҾ͘ ‣ ʮ͋ͨΓʯ͕ҰճҎ্ग़Δ֬ = ‣ ճҾ͚, 99%ͷ֬Ͱ͋ͨΓΛҾ͚Δ ‣ ͜ͷͱ͖, ϏοτͷϥϯμϜωε͕ඞཁ V δn δ ℓ 1 − (1 − δ)ℓ ℓ = 10/δ 10 log2 n δ Ԡ༻ 43
Slide 44
Slide 44 text
• ͷݩʹʮ͋ͨΓʯorʮͣΕʯ͕͋Δ ‣ গͳ͘ͱ ݸͷʮ͋ͨΓʯ͕͋Δ - Ұ༷ϥϯμϜʹҾ͍͕ͨ͋ͨΔ֬ = • -ΤΫεύϯμʔάϥϑ্Ͱ ʹैͬͯ ճ͘͡ΛҾ͘ ‣ άϥϑͷ࣍ ʹґଘ͠ͳ͍ఆʹͰ͖Δ ‣ -ٖࣅϥϯμϜͳͷͰ98%ͷ֬Ͱʮ͋ͨΓʯΛҾ͘ ‣ ༻͍ͨϥϯμϜωε V δn δ 0.04 𝒟 ℓ d n 𝒟 0.01 log2 n + 10 log2 d δ Ԡ༻ 44 u1 u2 uℓ ʮ͋ͨΓʯ ಠཱαϯϓϦϯάΑΓগͳ͍ʂ
Slide 45
Slide 45 text
•PCPఆཧ •ޡΓగਖ਼ූ߸ •ٖࣅཚੜث •ϋογϡؔ •ฏۉ࣌ܭࢉྔ ΤΫεύϯμʔάϥϑͷԠ༻ 45 [Charles, ’09] [Guruswami, Kabanets, ’08], [Goldreich, Impagliazzo, Levin, Venkatesan, Zuckerman, 90] [Goldreich, 00] [Sipser, Spielman, 96] [Dinur, 07]
Slide 46
Slide 46 text
•୯ମෳମͷΤΫεύϯμʔੑ ‣ ߴ࣍ݩΤΫεύϯμʔ •ͷະղܾͷղܾͷཱऀ ‣ ϚτϩΠυʹؔ͢ΔMihail—Vazirani༧ ‣ ہॴݕࠪՄೳޡΓగਖ਼ූ߸ͷߏ •ຊߨٛͰհ ۙͷಈ: ߴ࣍ݩΤΫεύϯμʔ 46
Slide 47
Slide 47 text
•ٖࣅϥϯμϜωε ‣ ७ਮֶͱTCSͷ྆ํʹݱΕΔ֓೦ ‣ , ܈, زԿֶʹԠ༻͞Ε͍ͯΔ(Β͍͠) •ΤΫεύϯμʔάϥϑ ‣ έΠϦʔάϥϑΛͬͯߏ ‣ ϥϯμϜωεΛʮઅʯͯ͘͠͡ΛҾ͘ํ๏ •ߴ࣍ݩΤΫεύϯμʔ ‣ ۙͷTCSͰϗοτͳ ‣ ߨٛͰΓ·͢ʂ ·ͱΊ 47 [Lubotzky, ’12]