Slide 1

Slide 1 text

Finite Identification and Local Linear Convergence of Proximal Splitting Algorithms Jalal Fadili Normandie Université-ENSICAEN, GREYC CNRS UMR 6072 Joint work with Jingwei Liang, Gabriel Peyré and Russell Luke Journées du GDR MOA 2015

Slide 2

Slide 2 text

MOA’15- Class of problems: motivations 2 x y H n × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Prior knowledge (regularization, constraints) y 2 Rm x0 2 Rn Forward model

Slide 3

Slide 3 text

MOA’15- Class of problems: motivations 2 x y H n × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Prior knowledge (regularization, constraints) x0 typically lives in a low-dimensional manifold y 2 Rm x0 2 Rn Forward model

Slide 4

Slide 4 text

MOA’15- Class of problems: motivations 3 x y H n × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Forward model Prior knowledge (regularization, constraints) Many applications in data sciences: signal/image processing, machine learning, statistics, etc.. x0 typically lives in a low-dimensional manifold y 2 Rm x0 2 Rn Solve an inverse problem through regularization : min x 2Rn F ( x ) | {z } Data fidelity + G ( x ) | {z } Regularization, constraints G promotes objects living in the same manifold as x0. F and G 2 0 (Rn)

Slide 5

Slide 5 text

MOA’15- Low-complexity regularization min x 2Rn F ( x ) + G ( x ) Low-complexity () Low-dimensional manifold F and G 2 0 (Rn)

Slide 6

Slide 6 text

MOA’15- Low-complexity regularization min x 2Rn F ( x ) + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors R2 R3 F and G 2 0 (Rn)

Slide 7

Slide 7 text

MOA’15- Low-complexity regularization min x 2Rn F ( x ) + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) R2 R3 F and G 2 0 (Rn)

Slide 8

Slide 8 text

MOA’15- Low-complexity regularization min x 2Rn F ( x ) + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) Low-rank matrices R2 R3 Sym 2 (R) F and G 2 0 (Rn)

Slide 9

Slide 9 text

MOA’15- Low-complexity regularization min x 2Rn F ( x ) + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) Low-rank matrices G ( x ) = k x k ⇤ (tightest convex relaxation of rank) R2 R3 Sym 2 (R) F and G 2 0 (Rn)

Slide 10

Slide 10 text

MOA’15- Proximal splitting and local linear convergence 5 45 40 35 30  25 20 15 10 -8 -6 -4 -2 0  2 4 6 10 12 14 16 18 8 6 4 2 0 8   5 10 15 20 25 30 35    10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102 F ( x ) + G ( x ) (Inertial) Forward-Backward LASSO min x 2Rn 1 2 k y A x k2 2 + k x k 1

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

No content

Slide 56

Slide 56 text

No content

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

No content

Slide 59

Slide 59 text

No content