Slide 1

Slide 1 text

HONS C J.-G. Young , G. Petri , F. Vaccarino , , A. Patania , June rd, Département de physique, de génie physique, et d’optique, Université Laval, Québec, Canada ISI Foundation, Turin, Italy Dipartimento di Scienze Matematiche, Politecnico di Torino, Torino, Italy

Slide 2

Slide 2 text

/ There are multi-agent interactions in complex systems Simplicial complexes track this explicitly

Slide 3

Slide 3 text

/ Why simplicial complexes? No loss of information upon projection

Slide 4

Slide 4 text

/ Why simplicial complexes? No loss of information upon projection

Slide 5

Slide 5 text

/ Why simplicial complexes? Efficient compression of the structure

Slide 6

Slide 6 text

/ Why simplicial complexes? Efficient compression of the structure

Slide 7

Slide 7 text

/ Disease regulation dataset (facets : genes, nodes : human diseases) [Goh et al., PNAS, , ( )] Diseasome - facets column 1

Slide 8

Slide 8 text

/ Problem we address : How to assess the significance of the properties of simplicial complexes?

Slide 9

Slide 9 text

/ Outline Simplicial complexes and null models Simplicial configuration model The sampling problem and its solution

Slide 10

Slide 10 text

/ Outline Simplicial complexes and null models Simplicial configuration model The sampling problem and its solution The shape of real complex systems : random or organized? Homology and Betti numbers

Slide 11

Slide 11 text

T /

Slide 12

Slide 12 text

/ The simplicial configuration model : basic definitions 2 3 4 5 1 F Degree sequence : d (2, 2, 1, 2, 1) Size sequence : s (3, 3, 2)

Slide 13

Slide 13 text

/ The simplicial configuration model : basic definitions 2 3 4 5 1 F Degree sequence : d (2, 2, 1, 2, 1) Size sequence : s (3, 3, 2)

Slide 14

Slide 14 text

/ The simplicial configuration model : basic definitions 2 3 4 5 1 F Degree sequence : d (2, 2, 1, 2, 1) Size sequence : s (3, 3, 2)

Slide 15

Slide 15 text

/ The simplicial configuration model : the ensemble The Simplicial Configuration Model (SCM) is the distribution : Pr(K; d, s) 1/|Ω(d, s)| Ω(d, s) : number of simplicial complexes with sequences (d, s) 2 3 4 5 1 Generalizes [Courtney and Bianconi, Phys. Rev. E , ( )]

Slide 16

Slide 16 text

/ The simplicial configuration model : the ensemble The Simplicial Configuration Model (SCM) is the distribution : Pr(K; d, s) 1/|Ω(d, s)| Ω(d, s) : number of simplicial complexes with sequences (d, s) Generalizes [Courtney and Bianconi, Phys. Rev. E , ( )]

Slide 17

Slide 17 text

S SCM /

Slide 18

Slide 18 text

/ Sampling : Change of representation 2 3 4 5 1 S : B Factor graph ensemble with degree sequences (d, s) ...

Slide 19

Slide 19 text

/ Sampling : Change of representation 2 3 4 5 1 S : B Factor graph ensemble with degree sequences (d, s) ...

Slide 20

Slide 20 text

/ Sampling : Change of representation 2 3 4 5 1 S : B Factor graph ensemble with degree sequences (d, s) ... ... and two additional constraints (mapping bijective) ◦ No ◦ No

Slide 21

Slide 21 text

/ Sampling : Constraints Input sequences : (d, s) ([2, 2, 1, 2, 1], [3, 3, 2]) Correct mapping 2 3 4 5 1 2 3 4 5 1 Bipartite graph Simplicial complex Output sequences : (d, s) ([2, 2, 1, 2, 1], [3, 3, 2])

Slide 22

Slide 22 text

/ Sampling : Constraints Input sequences : (d, s) ([2, 2, 1, 2, 1], [3, 3, 2]) Constraint not respected : No multiedges 2 3 4 5 1 2 3 4 5 1 Bipartite graph Simplicial complex Output sequences : (d, s) ([1, 2, 1, 1, 1], [2, 2, 2])

Slide 23

Slide 23 text

/ Sampling : Constraints Input sequences : (d, s) ([2, 2, 1, 2, 1], [3, 3, 2]) Constraint not respected : No included neighborhoods 2 3 4 5 1 2 3 4 5 1 Bipartite graph Simplicial complex Output sequences : (d, s) ([1, 1, 1, 1, 1], [3, 0, 2])

Slide 24

Slide 24 text

/ Consequence : Uniform distribution over bipartite graphs Uniform distribution over simplicial complexes

Slide 25

Slide 25 text

/ Consequence : Uniform distribution over bipartite graphs Uniform distribution over simplicial complexes

Slide 26

Slide 26 text

/ Sampling : Possible sampling strategies

Slide 27

Slide 27 text

/ Sampling : Possible sampling strategies Rejection sampling (stub matching + rejection) All bipartite graphs with sequences (d,s) No constraints violated Reject

Slide 28

Slide 28 text

/ Sampling : Possible sampling strategies Rejection sampling (stub matching + rejection) P : Far too many rejections! Loose upper bound : Pr[reject] > exp −1 2 d2 / d − 1 s2 / s − 1 All bipartite graphs with sequences (d,s) Reject

Slide 29

Slide 29 text

/ Sampling : Possible sampling strategies Rejection sampling (stub matching + rejection) P : Far too many rejections! Loose upper bound : Pr[reject] > exp −1 2 d2 / d − 1 s2 / s − 1 Markov Chain Monte Carlo The natural choice!

Slide 30

Slide 30 text

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 4 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 MCMC

Slide 31

Slide 31 text

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 4 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1

Slide 32

Slide 32 text

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 4 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1

Slide 33

Slide 33 text

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 4 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1

Slide 34

Slide 34 text

/ Sampling : MCMC Details M Pick L ∼ P random edges in bipartite graph P can be , we use Pr[L ] exp[λ ]/Z Rewire edges. If multiedge or included neighbors, reject. Similar to [Miklós–Erdős–Soukup, Electron. J. Combin., , ( )] 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1

Slide 35

Slide 35 text

/ Sampling : MCMC Details M Pick L ∼ P random edges in bipartite graph P can be , we use Pr[L ] exp[λ ]/Z Rewire edges. If multiedge or included neighbors, reject. Similar to [Miklós–Erdős–Soukup, Electron. J. Combin., , ( )] MCMC is uniform over Ω(d, s) Move set yields aperiodic chain ∗ Move set connects the space 100 101 102 103 104 Lmax 0 2500 5000 7500 Edit distance = 0 = 1 = +1 (a)

Slide 36

Slide 36 text

T : ? /

Slide 37

Slide 37 text

/ SCM has a null model : concept N : Is the quantity f (X) close to f (K) for random simplicial complexes X ∼ SCM[d(K), s(K)]?

Slide 38

Slide 38 text

/ SCM has a null model : concept N : Is the quantity f (X) close to f (K) for random simplicial complexes X ∼ SCM[d(K), s(K)]? 50 100 150 200 10 3 10 2 10 1 100 Distribution Property I Pr[| f (K) − f (X)| < ] ≈ 1 Yes : K is typical, the local quantities d, s explain f.

Slide 39

Slide 39 text

/ SCM has a null model : concept N : Is the quantity f (X) close to f (K) for random simplicial complexes X ∼ SCM[d(K), s(K)]? 50 100 150 200 10 3 10 2 10 1 100 Distribution Property I Pr[| f (K) − f (X)| < ] 1 No : K is atypical, K is organized beyond the local scale.

Slide 40

Slide 40 text

/ So ... are real systems organized?

Slide 41

Slide 41 text

/ Disease regulation dataset (true system) (facets : genes, nodes : human diseases) [Goh et al., PNAS, , ( )] Diseasome - facets column 1

Slide 42

Slide 42 text

/ Disease regulation dataset (random instance) (facets : genes, nodes : human diseases) [Goh et al., PNAS, , ( )] Diseasome - SCM (facets column 1)

Slide 43

Slide 43 text

/ Crimes in St-Louis (true system) (facets : people, nodes : crimes) [Rosenfeld et al., ( )] Moreno crime - facets column 1

Slide 44

Slide 44 text

/ Crimes in St-Louis (random instance) (facets : people, nodes : crimes) [Rosenfeld et al., ( )] Moreno crime - SCM (facets column 1)

Slide 45

Slide 45 text

/ So ... are real systems random?

Slide 46

Slide 46 text

/ So ... are real systems random? Visibly not.

Slide 47

Slide 47 text

/ How to quantify this : Homology in seconds 2 3 4 5 1 2 3 4 5 1 Q Done with homology. Results summarized with B β 0,β 1,... βk : counts the number of dimension k holes

Slide 48

Slide 48 text

/ Real systems : organized or random? Diseases Crime Diseasome - facets column 1 Moreno crime - facets column 1 0 50 10 3 10 2 10 1 100 Distribution 350 400 450 500 k 1 0 100 101 10 2 100 Degree Size (b) 50 100 150 200 k 10 3 10 2 10 1 100 Distribution 0 1 100 101 10 2 100 Degree Size (c) F – β0 , β1 in the SCM (symbol) vs real systems (horizontal lines)

Slide 49

Slide 49 text

/ Real systems : organized or random? Pollinators (real) Pollinators (random) Pollonators - facets column 0 Pollinators - SCM (facets column 0) 10 20 30 40 50 k 10 3 10 2 10 1 100 Distribution 0 1 101 10 2 10 1 100 Degree Size (a) F – β0 , β1 in the SCM (symbol) vs real systems (horizontal lines)

Slide 50

Slide 50 text

/ Software and tutorials : github.com/jg-you/scm

Slide 51

Slide 51 text

/ Software and tutorials : github.com/jg-you/scm

Slide 52

Slide 52 text

/ Software and tutorials : github.com/jg-you/scm

Slide 53

Slide 53 text

/ Selected references O ( ) J.-G. Young, G. Petri, F. Vaccarino and A. Patania, arxiv : . ( ) Equilibrium random ensembles ( ) O. Courtney and G. Bianconi, Phys. Rev. E , ( ) ( ) K. Zuev, O. Eisenberg and K. Krioukov, J. Phys. A , ( ) Sampling ( ) B. K. Fosdick, et al., arXiv : . ( )

Slide 54

Slide 54 text

/ Take-home message SCM : random simplicial complexes with fixed (d, s).

Slide 55

Slide 55 text

/ Take-home message SCM : random simplicial complexes with fixed (d, s). Efficient sampling with MCMC.

Slide 56

Slide 56 text

/ Take-home message SCM : random simplicial complexes with fixed (d, s). Efficient sampling with MCMC. Real system are not not always organized.

Slide 57

Slide 57 text

/ Take-home message SCM : random simplicial complexes with fixed (d, s). Efficient sampling with MCMC. Real system are not not always organized. Many open questions! Simpliciality, best distribution P, connectivity?

Slide 58

Slide 58 text

/ Take-home message SCM : random simplicial complexes with fixed (d, s). Efficient sampling with MCMC. Real system are not not always organized. Many open questions! Simpliciality, best distribution P, connectivity? Reference : arxiv.org/1705.10298 Software : github.com/jg-you/scm

Slide 59

Slide 59 text

/ Reference : arxiv.org/1705.10298 Software : github.com/jg-you/scm info@jgyoung.ca jgyoung.ca @_jgyou