Slide 1

Slide 1 text

@jxtx Chromosome Conformation in Context https://speakerdeck.com/jxtx/banff-2017

Slide 2

Slide 2 text

TAYLOR LAB REDDY LAB Teresa Luperchio Michael Sauria

Slide 3

Slide 3 text

1. Crosslink Protein/DNA complex 2. Restriction Enzyme Digest 3. Biotin ill and Ligate 4. Pull down Junctions 4. Sequence Reminder: Hi-C for measuring chromatin interactions A B Count matrix, for pairs of restriction fragments or larger bins (Lieberman-Aiden et al. 2009)

Slide 4

Slide 4 text

Hi-C Analysis Raw Count Matrix

Slide 5

Slide 5 text

Hi-C Analysis Raw Count Matrix Normalization & JK  % J K G J G K DJK ɿ ' GJ GK EJK FH ɿ 1PJTTPO GJ GK % EJK &JK &YQFDUFE DPVOU CFUXFFO CJOT J BOE K % J K  %JTUBODF DPNQPOFOU FJUIFS FYQMJDJU PS FNQJSJDBMMZ FT GJ GK #JO TQFDJöD DPSSFDUJPO GBDUPS EJSFDUMZ MFBSOFE PS QBSBN ċ

Slide 6

Slide 6 text

Hi-C Analysis Raw Count Matrix Normalization N ora Calling Structures (Hardish)

Slide 7

Slide 7 text

Hi-C Analysis Raw Count Matrix Normalization N ora Calling Structures (Hardish) N ora Calling point to point interactions (Helluv hard)

Slide 8

Slide 8 text

What we think we might know from Hi-C data E F Global organization into two compartments: A and B (Lieberman-Aiden et al. 2009)

Slide 9

Slide 9 text

What we think we might know from Hi-C data E F Global organization into two compartments: A and B (Lieberman-Aiden et al. 2009) 0 3.0 0 3.0 3.0 –3.0 Chr2: 2 Mb hg18 138000000 139000000 140000000 30 _ –30 _ 30 _ –30 _ 16 _ Local Organization into “Topologically Associated Domains” (Dixon et al. 2012)

Slide 10

Slide 10 text

What we think we might know from Hi-C data E F Global organization into two compartments: A and B (Lieberman-Aiden et al. 2009) 0 3.0 0 3.0 3.0 –3.0 Chr2: 2 Mb hg18 138000000 139000000 140000000 30 _ –30 _ 30 _ –30 _ 16 _ Local Organization into “Topologically Associated Domains” ~1Mb, CTCF enriched at boundaries (Dixon et al. 2012) And more dynamic sub-TADs Associated with different combinations of CTCF, cohesion, mediator… others? (Phillips-Cremins et al. 2013)

Slide 11

Slide 11 text

What we think we might know from Hi-C data E F Global organization into two compartments: A and B (Lieberman-Aiden et al. 2009) 0 3.0 0 3.0 3.0 –3.0 Chr2: 2 Mb hg18 138000000 139000000 140000000 30 _ –30 _ 30 _ –30 _ 16 _ CTCF Dependent, Cohesin Dependent And more dynamic sub-TADs Associated with different combinations of CTCF, cohesion, mediator… others? (Phillips-Cremins et al. 2013) CTCF Independent, Cohesin Independent (Nora et al. 2017 bioRxiv, Schwarzer et al. 2017 bioRxiv) Local Organization into “Topologically Associated Domains” ~1Mb, CTCF enriched at boundaries (Dixon et al. 2012)

Slide 12

Slide 12 text

What about 3D reconstructions? Using the distances implied by the binned interactions we can reconstruct 3D positions (For example, using PCA)

Slide 13

Slide 13 text

All mouse chromosomes (in different colors)

Slide 14

Slide 14 text

(from Speicher and Carter, Nature Reviews Genetics 2005)

Slide 15

Slide 15 text

All mouse chromosomes (colored by transcriptional activity)

Slide 16

Slide 16 text

Mouse chromosome 6 (colored by transcriptional activity)

Slide 17

Slide 17 text

Chromosome conformation data is unsatisfying for at least two reasons 1) It only measures chromatins relationship with itself, no connection to the structure of the nucleus 2) It only gives us a population average over millions of genome copies Can we provide context with alternative approaches?

Slide 18

Slide 18 text

(Jackson, Essays in Biochemistry 2010) Lamina Euchromatin (loosely packed) Heterochromatin (tightly packed)

Slide 19

Slide 19 text

Identifying DNA near a protein of interest with DamID Dam+POI fusion Dam only control (Southall and Brand, 2007 Aughey and Southall 2015)

Slide 20

Slide 20 text

Identifying DNA near a protein of interest with DamID 10 kb Dam-fusion binding Sequence and compare (Southall and Brand, 2007 Aughey and Southall 2015)

Slide 21

Slide 21 text

Identifying DNA near Lamina with DamID (Southall and Brand, 2007 Aughey and Southall 2015) m m N GAT CNNN N N N N N N C T A G NGAT CN N m Dam Nuclear lamina

Slide 22

Slide 22 text

Lamina Associated Domains (LMNB1) in Mouse Fibroblasts Chr 11: Chr 12: DamID Lad Call (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 23

Slide 23 text

Linking LADs and compartments

Slide 24

Slide 24 text

High resolution compartment calling 'PS FBDI CJO J TJ  # JG JO DPNQBSUNFOU # PS " JG " *OJUJBMJ[F T CBTFE PO TJHO PG FJHFOWFDUPS TDPSF 1SPCBCJMJUZ PG CJO J CFJOH JO DPNQBSUNFOU " JT 1 T J  H  ୑ Kɋ"J 1 Y  D JK ]T J  H 1 Y  D JK ]T J  H ɿ 1PJTTPO Ʉ JKH Ʉ JKH  ͜ ͟ ͝ ͟ ͞ G JK % HH E JK JG T K  H G JK % HHĤ E JK PUIFSXJTF 8IFSF DJK JT UIF SFBE DPVOU CFUXFFO GSBHNFOUT J BOE K GJK JT UIF TVN PG JOUFSBDUJPO OPSNBMJ[BUJPO WBMVFT GPS CJO JK BT MFBSOFE CZ )J'JWF EJK JT UIF JOUFSGSBHNFOU EJTUBODF BOE %HH  %HHĤ JT UIF EJTUBODF EFDBZ GVODUJPO GPS JOUFSBDUJPOT CPUI JO TUBUF H  JO EJòFSFOU TUBUFT 6QEBUF CJO BTTJHONFOU CBTFE PO 1 TJ JUFSBUF BOE TBNQMF

Slide 25

Slide 25 text

LADs are the B compartment C B DamID Comp LADs Igh chr12 (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 26

Slide 26 text

LADs are the B compartment (Luperchio, Sauria et al, bioRxiv, 2017) Rrank =0.716 Data point density 0 243 0 -39.0 49.8 0 -5.7 4.4 Compartment Score DamID Score B (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 27

Slide 27 text

LADs are the B compartment DamID Comp LADs Igh 1Mb 110M 118M (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 28

Slide 28 text

-100 0 100 -3.28 3.10 DamID -100 0 100 -19.29 33.99 Compartment -100 0 100 -0.41 0.91 Boundary -100 0 100 0.11 0.92 H3K9me2 -100 0 100 -0.23 0.50 H3K27me3 -100 0 100 0.00 1.22 CTCF Distance from boundary (Kb) LAD Boundaries

Slide 29

Slide 29 text

How are these regions structured in situ?

Slide 30

Slide 30 text

Fluorescent probes for LAD and nonLAD regions — Reddy Lab LAD Pool nonLAD Pool Remove repetitive elements In silico selection of probes based on Tm and GC content Remove probes with high homology to off target loci Chemical synthesis of 150bp oligos ULS label with Cy3 or Cy5 dyes Chr 11: Chr 12: (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 31

Slide 31 text

Chr11 Chr12 non-LAD LAD LaminB1 Hoechst Merge Primary Fibroblasts (Luperchio, Sauria et al, bioRxiv, 2017) Chromosome Conformation Paints — Reddy Lab (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 32

Slide 32 text

(Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 33

Slide 33 text

(Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 34

Slide 34 text

LaminB1 LAD nonLAD Distance from periphery Fluorescence Chromosomes are organized into LAD and non-LAD domains (Luperchio, Sauria et al, bioRxiv, 2017) LAD regions are constrained at the lamina 0.0 1.0 2.0 3.0 4.0 0.00 0.02 0.04 Chromosome 11 0.0 1.0 2.0 3.0 4.0 Chromosome 12 Distance from Periphery ( m) 0.0 1.0 2.0 3.0 4.0 Overlay Chromosome 11 Chromosome 12 E Ď (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 35

Slide 35 text

Higher order LAD interactions

Slide 36

Slide 36 text

LADs preferentially interact with other LADs -2 2 0 ME F Inter-domain Log2 Interaction E nrichment P < 10− 5 P < 10− 5 LAD by LAD nonLAD by LAD nonLAD by nonLAD (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 37

Slide 37 text

LAD Igh locus UCS C Genes ≤ -3 ≥ 3 Log2 Interaction E nrichment ME F Chr12 3M 121.3M (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 38

Slide 38 text

LAD Igh locus UCS C Genes ≤ -3 ≥ 3 Log2 Interaction E nrichment ME F Chr12 3M 121.3M (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 39

Slide 39 text

Chr12 3M 121.3M 112M 120M L G ME F M L (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 40

Slide 40 text

Developmental regulation of local and higher order organization Chr12 3M 121.3M 112M 120M L G ME F 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M 110M 120M 112M 120M L ProB (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 41

Slide 41 text

Developmental regulation of local and higher order organization Chr12 121.3M L G ME F M 70M 80M 90M 100M 110M 120M L ProB (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 42

Slide 42 text

Escaping LADs

Slide 43

Slide 43 text

Dips: regions in LADs with low DamID signal -3.76 3.76 DamID -9.58 9.58 Compartment -0.17 0.89 Boundary Genes 133M 134M 135M 136M LAD dip call (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 44

Slide 44 text

Dips contain putative regulatory modules H3K27me3 H3K27ac H3K4me1 H3K4me3 CBP DamID Compartment Boundary CTCF Cohesin -100 D 100 (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 45

Slide 45 text

DamID Compartment Boundary CTCF Cohesin H3K27me3 H3K27ac H3K4me1 H3K4me3 CBP UCSC TSS Log2 (H3K4me1/3) TSS present -100 D 100 -3.8 3.8 -100 D 100 -27 36 -100 D 100 -0.5 1.0 -100 D 100 0.0 2.0 -100 D 100 0.0 1.5 -100 D 100 -0.3 0.5 -100 D 100 0.0 3.6 -100 D 100 0.0 2.7 -100 D 100 0.0 2.7 -100 D 100 0.2 1.9 -100 D 100 0 1+ 7.5 -7.4 Distance from DIP boundary (Kb)

Slide 46

Slide 46 text

Long range interaction from within dips -2.2 3.3 Log2 enrichment per 1Kb bin UCSC Genes CTCF 102.9M 103.0M 103.1M 103.2M Chr2 ≤-3 ≥6 Log2 Interaction Enrichment Enhancer-anchored TSS-anchored LAD DIP (Luperchio, Sauria et al, in preparation) (Luperchio, Sauria et al, bioRxiv, 2017) (Luperchio, Sauria et al. 2017, bioRxiv doi:10.1101/122226)

Slide 47

Slide 47 text

Developmental reorganization

Slide 48

Slide 48 text

Using the distances implied by the binned interactions we can reconstruct 3D positions (For example, again using PCA) These are ensemble models over millions of cells, do they recapitulate the single cell organization?

Slide 49

Slide 49 text

MEF Chr12 ProB Chr12 -6.32 6.32 DamID Score -3.32 3.32 DamID Score ĊĎ IGH

Slide 50

Slide 50 text

MEF Chr12 ProB Chr12 -6.32 6.32 DamID Score -3.32 3.32 DamID Score ĊĎ IGH 1µm 1µm D MEF pro-B

Slide 51

Slide 51 text

Summary 1. LADs are the chromatin B-compartment 2. LADs/B-compartment is constrained at the nuclear lamina 3. LAD state / compartmentalization is developmentally coordinated 4. Small regions within LADs — much smaller than a stereotypical TAD — organize into the A compartment and contain evidence for regulatory activity

Slide 52

Slide 52 text

C Repressed gene Activated gene TSS-containing DamID dip Putative enhancer- containing DamID dip Repressed subdomain Gene-rich LAD Gene-poor LAD TAD Nuclear membrane Nuclear interior A-Compartment B-Compartment

Slide 53

Slide 53 text

ACKnowledgements Chromatin analysis and methods developed by Michael E. G. Sauria. Chromosome conformation paints: Teresa Luperchio and Karen Reddy HiFive available from github.com/bxlab/hiive, or . Our lab: Enis Afgan, Dannon Baker, Boris Brenerman, Min Hyung Cho, Dave Clements, PeterDeFord, German Uritskiy, Mallory Freeberg, Michael E. G. Sauria, Mo Heydarian, Sam Guerler Other collaborators: Anton Nekrutenko and the group,
 Craig Stewart and the group
 Ross Hardison and the VISION group
 Jennifer Phillips-Cremins and Victor Corces (sub-TADS and HiFive)
 Johnston, Kim, Hilser, and DiRuggiero labs (JHU Biology)
 JHU Genomics Collective NHGRI (HG005133, HG004909, HG005542, HG005573, HG006620)
 NIDDK (DK065806) and NSF (DBI 0543285, DBI 0850103) install with bioconda