Slide 20
Slide 20 text
Input (26, 40, 16)
PaddedConv2D
Filters: 128
Kernel: 5x5
Dropout (0.3)
PaddedConv2D
Filters: 1
Kernel: 5x5
PaddedConv2D
Filters: 32
Kernel: 5x5
Dropout (0.3)
PaddedConv2D
Filters: 16
Kernel: 5x5
Dropout (0.3)
PaddedConv2D
Filters: 64
Kernel: 5x5
Dropout (0.3)
Output (26, 40, 1)
Input (26, 40, 16)
PaddedConv2D
Filters: 16
Kernel: 3x3
Spatial Dropout (0.3)
PaddedConv2D
Filters: 16
Kernel: 3x3
MaxPooling
PaddedConv2D
Filters: 32
Kernel: 3x3
Spatial Dropout (0.3)
PaddedConv2D
Filters: 32
Kernel: 3x3
MaxPooling
PaddedConv2D
Filters: 64
Kernel: 3x3
Spatial Dropout (0.3)
PaddedConv2D
Filters: 64
Kernel: 3x3
MaxPooling
TransposedConv2D
Filters: 64, Kernel: 2x2
PaddedConv2D
Filters: 64
Kernel: 3x3
PaddedConv2D
Filters: 64
Kernel: 3x3
TransposedConv2D
Filters: 32, Kernel: 2x2
PaddedConv2D
Filters: 32
Kernel: 3x3
PaddedConv2D
Filters: 32
Kernel: 3x3
concatenation
concatenation
TransposedConv2D
Filters: 16, Kernel: 2x2
PaddedConv2D
Filters: 16
Kernel: 3x3
PaddedConv2D
Filters: 1
Kernel: 3x3
concatenation
Output (26, 40, 1)
Spatial Dropout (0.3)
PaddedConv2D
Filters: 128
Kernel: 3x3
PaddedConv2D
Filters: 128
Kernel: 3x3
PaddedConv2D
Filters: 16
Kernel: 3x3
Models
U-NET inspired network
Similar to:
Ronneberger et al. 2015
Rozas et al. 2019
All convolutional net
Similar to:
Springerber et al. 2015
Rasp et al. 2020