Slide 1

Slide 1 text

@fellyph Using Machine Learning to improve the user experience Fellyph Cintra

Slide 2

Slide 2 text

@fellyph Or: Machine learning for mortal developers

Slide 3

Slide 3 text

@fellyph @fellyph Deloitte Digital Google Developer Expert

Slide 4

Slide 4 text

@fellyph Artificial Intelligence ?

Slide 5

Slide 5 text

@fellyph Artificial Intelligence ???

Slide 6

Slide 6 text

@fellyph –Arthur Samuel “Field of study that gives computers the ability to learn without being explicitly programmed.”

Slide 7

Slide 7 text

@fellyph 250 300 100 270 4 151 Example: Normal computation If (x > 200) { side = right; } esle { side = left; } Right - 250 Right - 300 Left - 100 Right - 270 Left - 4 Left - 151

Slide 8

Slide 8 text

@fellyph Example: AI computation Right - 250 Right - 300 Left - 100 Right - 270 Left - 4 Left - 151 Predict next results

Slide 9

Slide 9 text

@fellyph Example: AI computation Right - 250 Right - 300 Left - 100 Right - 270 Left - 4 Left - 151 Predict next results

Slide 10

Slide 10 text

@fellyph AI Terms Natural Language Neural network Datasets Supervised Learning Unsupervised Learning Pre-trained models Machine Learning Deep Learning

Slide 11

Slide 11 text

@fellyph AI Terms Natural Language Neural network Datasets Supervised Learning Unsupervised Learning Pre-trained models Machine Learning Deep Learning

Slide 12

Slide 12 text

@fellyph Artificial Intelligence Machine Learning Deep Learning Natural Language Neural Network Supervised Learning Unsupervised Learning

Slide 13

Slide 13 text

@fellyph

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

@fellyph ML5.js

Slide 16

Slide 16 text

@fellyph What we can Classify? Images Sounds Text

Slide 17

Slide 17 text

@fellyph Can we use ML5.js and WordPress?

Slide 18

Slide 18 text

@fellyph Ναί!!!

Slide 19

Slide 19 text

@fellyph Steps 1. Create a Gutenberg Block(optional) 2. Define labels(output) - Product ID 3. Training model 4. Export Pre-trained model 5. Apply script to a Gutenberg block

Slide 20

Slide 20 text

@fellyph LET’S CODE!

Slide 21

Slide 21 text

@fellyph MAIN FUNCTIONS

Slide 22

Slide 22 text

@fellyph Training

Slide 23

Slide 23 text

@fellyph Solution

Slide 24

Slide 24 text

@fellyph gotResults ruction

Slide 25

Slide 25 text

@fellyph Solution

Slide 26

Slide 26 text

@fellyph Considerations • KNN model - 500kb • FeatureExtractor model - 5MB(more than 2 labels).

Slide 27

Slide 27 text

@fellyph Coming soon https://wicg.github.io/shape-detection-api/

Slide 28

Slide 28 text

@fellyph Chrome support(behind flag) https://developers.google.com/web/updates/2019/01/shape-detection

Slide 29

Slide 29 text

@fellyph Links https://p5js.org/ https://ml5js.org/ https://github.com/fellyph/ml5js-gutenberg https://www.youtube.com/watch?v=jmznx0Q1fP0 ml5.js course

Slide 30

Slide 30 text

@fellyph Obrigado (thanks)