Slide 1

Slide 1 text

1 19 制限ボルツマンマシンの話 慶應義塾大学理工学部物理情報工学科 渡辺宙志 2024年5月2日 研究室ミーティング

Slide 2

Slide 2 text

2 19 制限ボルツマンマシンとは 制限ボルツマンマシン(Restricted Boltzmann Machine, RBM) とはボルツマンマシンの一種 ボルツマンマシンとはイジング 模型(Ising Model)の一種 (※ベルヌーイ-ベルヌーイ型の場合) RBMを理解するには、イジング模型を理解しなければならない

Slide 3

Slide 3 text

3 19 イジング模型 • 格子の各点にスピン(小さな磁石)がある • スピンは「上」と「下」の状態がある • 隣り合うスピンをつなぐ線をボンドと呼ぶ ボンドの両側の スピンの向き 同じ 逆 エネルギー −𝐽 𝐽 𝐽 > 0ならスピンは揃いたがる(強磁性的) 𝐽 < 0ならスピンは逆向きを好む(反強磁性)

Slide 4

Slide 4 text

4 19 イジング模型 格子の上の全てのボンドについてエネルギー の和を取り、この系の全エネルギーとする このような模型をイジング模型(Ising Model)と呼び、 磁性体の簡単なモデルになっている 以下、強磁性 (𝐽 > 0)の場合を考える 𝐸 = −2𝐽 + 2𝐽 = 0

Slide 5

Slide 5 text

5 19 イジング模型 𝑖番目のスピンの状態を𝜎𝑖 とする 𝜎𝑖 の値は1(上向き)か-1(下向き)のいずれか −𝐽 𝐽 𝜎𝑖 = 1 𝜎𝑗 = 1 𝜎𝑖 = 1 𝜎𝑗 = −1 両方まとめて−𝐽𝜎𝑖 𝜎𝑗 と書ける

Slide 6

Slide 6 text

6 19 イジング模型 全系のエネルギーは以下のように書ける 𝐻 = −𝐽 ෍ 𝑖,𝑗 𝜎𝑖 𝜎𝑗 系の全てのボンドについて和をとるという意味 全系のエネルギーを与える量をハミルトニアンとよぶ

Slide 7

Slide 7 text

7 19 ボルツマン重み 系の状態に通し番号をつけ、𝑖番目の状態のエネルギーを𝐸𝑖 とする 状態𝑖 エネルギー 𝐸𝑖 = 4𝐽 𝑤𝑖 = exp(−𝛽𝐸𝑖 ) ボルツマン定数 𝛽 = 1/𝑘𝐵 𝑇 逆温度 𝑘𝐵 各状態の出現確率がボルツマン重みに比例する

Slide 8

Slide 8 text

8 19 イジング模型からボルツマンマシンへ イジング模型を「スイッチを押したら、状態がボルツマン重みの確率に比 例して出現するマシン」だと思うことにする = = イジング模型のスピンを電球の配列と考え、 スピン下向きを「電気オフ」、スピン上向きを「電気オン」と対応させる

Slide 9

Slide 9 text

9 19 イジング模型からボルツマンマシンへ 𝐸 = −4J 𝐸 = 0 𝑤 = exp(4𝛽𝐽) 𝑤 = 1 > 左のパターンの方が出現確率が高い

Slide 10

Slide 10 text

10 19 イジング模型からボルツマンマシンへ スピンによって電光掲示板のようにパターンを作ることができる イジングマシンはスピン間相互作用から出現パターンを予想していた 逆に、所望の出現パターンを持つようなスピン間相互作用を作れないか? ボルツマンマシン

Slide 11

Slide 11 text

11 19 ボルツマンマシン スピン間に適当にボンドを繋いでおく ボンドにはスピン間相互作用𝐽𝑖𝑗 を与える 各スピンには局所磁場ℎ𝑖 を与える 𝐻 = − ෍ 𝑖,𝑗 𝐽𝑖𝑗 𝜎𝑖 𝜎𝑗 + ෍ 𝑖 ℎ𝑖 𝜎𝑖 状態はボルツマン重みに従って出現させる

Slide 12

Slide 12 text

12 19 ボルツマンマシン 所望のパターン 1/3 2/3 上記の確率を実現するような重みと局所磁場を求めたい 𝐻 = − ෍ 𝑖,𝑗 𝐽𝑖𝑗 𝜎𝑖 𝜎𝑗 + ෍ 𝑖 ℎ𝑖 𝜎𝑖 一般には極めて難しい

Slide 13

Slide 13 text

13 19 制限ボルツマンマシン • スピン間に適当にボンドを繋いでおく • ボンドにはスピン間相互作用𝐽𝑖𝑗 を与える • 各スピンには局所磁場ℎ𝑖 を与える • スピンを2つのグループに分け、同じグループ間にはスピ ン間相互作用を持たせない 隠れ層 可視層 この制限により、CD法(Contrastive divergence method)と言う 効率的な学習アルゴリズムが利用可能に(「制限」のメリット) G. E. Hinton, Neural Comput. 14, 1771–1800 (2002)

Slide 14

Slide 14 text

14 19 制限ボルツマンマシン 隠れ層 隠れ層 可視層 可視層 スイッチを押すと全て のランプが重みに従っ て確率的に光るが 見えるのは可視層 のランプのみ

Slide 15

Slide 15 text

15 19 制限ボルツマンマシン 所望のパターン 1/3 2/3 隠れ層 可視層 RBM 可視層の出現パターンが所望のパターンに一致するように重みを決める その際、隠れ層の状態は問わない RBMの学習

Slide 16

Slide 16 text

16 19 制限ボルツマンマシン RBMの学習 大量のデータを暗記させる 学習済みRBMができること 聞くたびに覚えたものからランダムに一つ返す

Slide 17

Slide 17 text

17 19 RBMの用途 ボルツマンマシンはパターンを記憶できる →覚えていないパターンが来たらわかる(異常検知) →パターンの一部を乱されてもわかる(ノイズ修正) 制限ボルツマンマシンは情報を圧縮できる → 可視層に入力された情報を、一度隠れ層に圧縮し て保存し、また可視層に再現できる

Slide 18

Slide 18 text

18 19 RBMの情報圧縮 1. 可視層にパターン入力 2. 可視層のパターンから 隠れ層のパターン再現 3. 隠れ層のパターンから 可視層のパターン再現

Slide 19

Slide 19 text

19 19 まとめ • ボルツマンマシンはイジング模型の一種 イジング模型:相互作用から出現パターンを推定 ボルツマンマシン:出現パターンから相互作用を決定 • ボルツマンマシンはパターンを記憶する • ノイズ修正や異常検知に使える • 制限ボルツマンマシンは、情報を圧縮する • 可視層に比べて隠れ層の数が少ない • 隠れ層は、入力の特徴量ベクトルとみなせる • 制限ボルツマンマシンは構造が単純であるため、 「どこにどのような情報が蓄積されたか」の解析 ができる可能性がある