Slide 32
Slide 32 text
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
optimizer = Adam(lr=0.001)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
X_train, y_train, X_test, y_test = load_data()
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
predictions = model.predict(X_test)
loss, accuracy = model.evaluate(X_test, y_test)