Slide 1

Slide 1 text

Numerical Optimal Transport and Applications Gabriel Peyré www.numerical-tours.com Joint works with: Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, Justin Solomon

Slide 2

Slide 2 text

Imaging: Statistical Image Models Source image (X) Style image (Y) Source image after color transfer J. Rabin Wasserstein Regularization Colors distribution: each pixel point in R3

Slide 3

Slide 3 text

Imaging: Statistical Image Models Input image Modified image Source image (X) Style image (Y) Source image after color transfer J. Rabin Wasserstein Regularization Optimal transport framework Sliced Wasserstein projection Applications Application to Color Transfer Source image (X) Sliced Wasserstein projection of X to style image color statistics Y Optimal transport framework Sliced Wasserstein projection Applications Application to Color Transfer Source image (X) Style image (Y) Sliced Wasserstein projection of X to style image color statistics Y Source image after color transfer J. Rabin Wasserstein Regularization Colors distribution: each pixel point in R3

Slide 4

Slide 4 text

Other applications: Imaging: Statistical Image Models Input image Modified image Source image (X) Style image (Y) Source image after color transfer J. Rabin Wasserstein Regularization Optimal transport framework Sliced Wasserstein projection Applications Application to Color Transfer Source image (X) Sliced Wasserstein projection of X to style image color statistics Y Optimal transport framework Sliced Wasserstein projection Applications Application to Color Transfer Source image (X) Style image (Y) Sliced Wasserstein projection of X to style image color statistics Y Source image after color transfer J. Rabin Wasserstein Regularization Colors distribution: each pixel point in R3 Texture synthesis, segmentation, . . . Classification, clustering . . . Surface processing, reflectance modeling . . .

Slide 5

Slide 5 text

Machine Learning: Bag of Features Image descriptors: Gradient distribution Histogram of features

Slide 6

Slide 6 text

Machine Learning: Bag of Features Image descriptors: Text descriptors: Gradient distribution Histogram of features

Slide 7

Slide 7 text

Overview • Optimal Transport • Regularized Transport • Wasserstein Barycenters • Heat Kernel Approximation

Slide 8

Slide 8 text

Optimal Transport Discrete densities: Histograms: µ = P i p i xi xi 2 Rd ⌃N def. = p 2 RN + ; P i pi = 1

Slide 9

Slide 9 text

Optimal Transport Discrete densities: Histograms: Couplings: µ = P i p i xi xi 2 Rd q p ⇡ C(p, q) def. = ⇡ 2 (R +)N⇥N ; ⇡1 = p, ⇡T 1 = q ⌃N def. = p 2 RN + ; P i pi = 1

Slide 10

Slide 10 text

Optimal Transport Discrete densities: Histograms: Couplings: µ = P i p i xi xi 2 Rd Ground cost: c 2 (R +)N⇥N . p-Wasserstein transport: ci,j = || xi xj ||p q p ⇡ C(p, q) def. = ⇡ 2 (R +)N⇥N ; ⇡1 = p, ⇡T 1 = q ⌃N def. = p 2 RN + ; P i pi = 1

Slide 11

Slide 11 text

Optimal Transport Discrete densities: Histograms: Couplings: µ = P i p i xi xi 2 Rd Ground cost: c 2 (R +)N⇥N . p-Wasserstein transport: ci,j = || xi xj ||p q p ⇡ C(p, q) def. = ⇡ 2 (R +)N⇥N ; ⇡1 = p, ⇡T 1 = q W(p, q) def. = min nP i,j ⇡i,jci,j ; ⇡ 2 C(p, q)o Optimal transport distance: ⌃N def. = p 2 RN + ; P i pi = 1

Slide 12

Slide 12 text

Algorithms Arbitrary discrete measures: ⇡? 2 argmin ⇡2C(p,q) hc, ⇡i µ = P N i =1 p i xi , ⌫ = P P j =1 q j yj

Slide 13

Slide 13 text

Algorithms Arbitrary discrete measures: ⇡? 2 argmin ⇡2C(p,q) hc, ⇡i µ = P N i =1 p i xi , ⌫ = P P j =1 q j yj ! Linear program interior points (polynomial) transportation simplex

Slide 14

Slide 14 text

Algorithms Arbitrary discrete measures: ⇡? 2 argmin ⇡2C(p,q) hc, ⇡i Point clouds: N = P, pi = qj = 1/N. W(p, q) = min 2 PermN P i ci, (i) ! Hungarian/auction algorithms, complexity O(N3). µ = P N i =1 p i xi , ⌫ = P P j =1 q j yj ! Linear program interior points (polynomial) transportation simplex µ ⌫

Slide 15

Slide 15 text

Algorithms Arbitrary discrete measures: ⇡? 2 argmin ⇡2C(p,q) hc, ⇡i Point clouds: N = P, pi = qj = 1/N. W(p, q) = min 2 PermN P i ci, (i) 1-D and convex cost: ci,j = | xi xj |p , p > 1. ! Hungarian/auction algorithms, complexity O(N3). µ = P N i =1 p i xi , ⌫ = P P j =1 q j yj ! Linear program interior points (polynomial) transportation simplex µ ⌫ sorting the values, O(N log(N)) operations. µ ⌫

Slide 16

Slide 16 text

Algorithms Arbitrary discrete measures: ⇡? 2 argmin ⇡2C(p,q) hc, ⇡i Point clouds: N = P, pi = qj = 1/N. W(p, q) = min 2 PermN P i ci, (i) 1-D and convex cost: ci,j = | xi xj |p , p > 1. ! Hungarian/auction algorithms, complexity O(N3). µ = P N i =1 p i xi , ⌫ = P P j =1 q j yj ! Linear program interior points (polynomial) transportation simplex µ ⌫ sorting the values, O(N log(N)) operations. µ ⌫ Need for fast approximate algorithms for generic c .

Slide 17

Slide 17 text

Overview • Optimal Transport • Regularized Transport • Wasserstein Barycenters • Heat Kernel Approximation • Wasserstein Gradient Flows

Slide 18

Slide 18 text

Entropy Regularized Transport (minus) Entropy: E ( ⇡ ) def. = X i,j ⇡i,j(log( ⇡i,j) 1) + ◆R+ ( ⇡i,j)

Slide 19

Slide 19 text

Entropy Regularized Transport (minus) Entropy: Regularized distance: E ( ⇡ ) def. = X i,j ⇡i,j(log( ⇡i,j) 1) + ◆R+ ( ⇡i,j) W (p, q) def. = min {h⇡, ci + E(⇡) ; ⇡ 2 C(p, q)} ⇡ def. = argmin {h⇡, ci + E(⇡) ; ⇡ 2 C(p, q)} [Schrodinger 1931] Used in economy [Galichon Salani´ e 2008] and machine learning [Cuturi 2013]

Slide 20

Slide 20 text

Entropy Regularized Transport (minus) Entropy: Regularized distance: ⇡ c E ( ⇡ ) def. = X i,j ⇡i,j(log( ⇡i,j) 1) + ◆R+ ( ⇡i,j) W (p, q) def. = min {h⇡, ci + E(⇡) ; ⇡ 2 C(p, q)} ⇡ def. = argmin {h⇡, ci + E(⇡) ; ⇡ 2 C(p, q)} [Schrodinger 1931] Used in economy [Galichon Salani´ e 2008] and machine learning [Cuturi 2013]

Slide 21

Slide 21 text

The Impact of Regularization Proposition: ⇡ !0 ! argmin ⇡2S E(⇡) W (p, q) !0 ! W(p, q) S def. = argmin {h⇡, ci ; ⇡ 2 C(p, q)}

Slide 22

Slide 22 text

The Impact of Regularization Proposition: ⇡ !+1 ! pqT ⇡ !0 ! argmin ⇡2S E(⇡) W (p, q) !0 ! W(p, q) 1 W (p, q) !+1 ! E(p) + E(q) S def. = argmin {h⇡, ci ; ⇡ 2 C(p, q)}

Slide 23

Slide 23 text

The Impact of Regularization Proposition: ⇡ !+1 ! pqT ⇡ !0 ! argmin ⇡2S E(⇡) W (p, q) !0 ! W(p, q) 1 W (p, q) !+1 ! E(p) + E(q) S def. = argmin {h⇡, ci ; ⇡ 2 C(p, q)} EMD Entrop ⇡ p q

Slide 24

Slide 24 text

Kullback-Leibler Projections KL( ⇡|⇠ ) def. = P i,j ⇡i,j log ⇣ ⇡i,j ⇠i,j ⌘ + ⇠i,j ⇡i,j KL divergence:

Slide 25

Slide 25 text

Kullback-Leibler Projections KL( ⇡|⇠ ) def. = P i,j ⇡i,j log ⇣ ⇡i,j ⇠i,j ⌘ + ⇠i,j ⇡i,j KL divergence: where ⇠ = e c One has: h⇡, ci + E(⇡) = KL(⇡|⇠) + C

Slide 26

Slide 26 text

Kullback-Leibler Projections W (p, q) = min {KL(⇡|⇠) ; ⇡ 2 C(p, q)} ⇡ = ProjC(p,q)( ⇠ ) def. = argmin { KL( ⇡|⇠ ) ; ⇡ 2 C ( p, q ) } Proposition: KL( ⇡|⇠ ) def. = P i,j ⇡i,j log ⇣ ⇡i,j ⇠i,j ⌘ + ⇠i,j ⇡i,j KL divergence: where ⇠ = e c One has: h⇡, ci + E(⇡) = KL(⇡|⇠) + C

Slide 27

Slide 27 text

Kullback-Leibler Projections W (p, q) = min {KL(⇡|⇠) ; ⇡ 2 C(p, q)} Constraint splitting: q p ⇡ C(p, q) = C1 \ C2 ⇢ C1 = ⇡ 2 (R +)N⇥N ; ⇡1 = p , C2 = ⇡ 2 (R +)N⇥N ; ⇡T 1 = q . ⇡ = ProjC(p,q)( ⇠ ) def. = argmin { KL( ⇡|⇠ ) ; ⇡ 2 C ( p, q ) } Proposition: KL( ⇡|⇠ ) def. = P i,j ⇡i,j log ⇣ ⇡i,j ⇠i,j ⌘ + ⇠i,j ⇡i,j KL divergence: where ⇠ = e c One has: h⇡, ci + E(⇡) = KL(⇡|⇠) + C

Slide 28

Slide 28 text

Sinkhorn / IPFP Algorithm Iterative Bregman projections: ⇡(0) = ⇠ ⇠ ⇡(1) ⇡(2) ⇡(3) ⇡(4) ⇡(5) ⇡ ⇡(`+1) = ProjC`%K ( ⇡(`) ) [Bregman 1957]

Slide 29

Slide 29 text

Sinkhorn / IPFP Algorithm Iterative Bregman projections: ⇡(0) = ⇠ ⇠ ⇡(1) ⇡(2) ⇡(3) ⇡(4) ⇡(5) ⇡ ⇡(`+1) = ProjC`%K ( ⇡(`) ) Theorem: ⇡(`) ! ProjC1 \...\CK ( ⇠ ) [Bregman 1957] If {Ci }i are a ne sets,

Slide 30

Slide 30 text

Sinkhorn / IPFP Algorithm Iterative Bregman projections: ⇡(0) = ⇠ ⇠ ⇡(1) ⇡(2) ⇡(3) ⇡(4) ⇡(5) ⇡ ⇡(`+1) = ProjC`%K ( ⇡(`) ) Theorem: ⇡(`) ! ProjC1 \...\CK ( ⇠ ) Fixed marginals: Proposition: ProjC1 ( ⇡ ) = diag ⇣ p ⇡1 ⌘ ⇡ ProjC2 ( ⇡ ) = ⇡ diag ⇣ q ⇡T 1 ⌘ ( C1 def. = {⇡ ; ⇡1 = p} , C2 def. = ⇡ ; ⇡T 1 = q . [Bregman 1957] If {Ci }i are a ne sets,

Slide 31

Slide 31 text

Diagonal Scaling, Fast Implementation Sinkhorn algorithm: ⇡(0) = ⇠ [Sinkhorn 1967] [Deming,Stephan 1940] ⇡(2`+1) = diag(p/⇡(2`)1)⇡(2`) ⇡(2`+2) = ⇡(2`+1) diag(q/⇡(2`+1),T 1)

Slide 32

Slide 32 text

Diagonal Scaling, Fast Implementation Sinkhorn algorithm: ⇡(0) = ⇠ [Sinkhorn 1967] [Deming,Stephan 1940] Proposition: ⇡ = diag(u )⇠ diag(v ) where ⇠ = e c . ⇡(2`+1) = diag(p/⇡(2`)1)⇡(2`) ⇡(2`+2) = ⇡(2`+1) diag(q/⇡(2`+1),T 1)

Slide 33

Slide 33 text

Diagonal Scaling, Fast Implementation Sinkhorn algorithm: ⇡(0) = ⇠ [Sinkhorn 1967] [Deming,Stephan 1940] Proposition: ⇡ = diag(u )⇠ diag(v ) where ⇠ = e c . ⇡(`) = diag(u(`))⇠ diag(v(`)) ⇡(2`+1) = diag(p/⇡(2`)1)⇡(2`) ⇡(2`+2) = ⇡(2`+1) diag(q/⇡(2`+1),T 1)

Slide 34

Slide 34 text

Diagonal Scaling, Fast Implementation Sinkhorn algorithm: ⇡(0) = ⇠ [Sinkhorn 1967] [Deming,Stephan 1940] v(0) = 1 Sinkhorn, revisited: u(`) = p ⇠v(`) v(`+1) = q ⇠T u(`) Proposition: ⇡ = diag(u )⇠ diag(v ) where ⇠ = e c . ⇡(`) = diag(u(`))⇠ diag(v(`)) ⇡(2`+1) = diag(p/⇡(2`)1)⇡(2`) ⇡(2`+2) = ⇡(2`+1) diag(q/⇡(2`+1),T 1)

Slide 35

Slide 35 text

Diagonal Scaling, Fast Implementation Sinkhorn algorithm: ! Only matrix-vector multiplications. ⇡(0) = ⇠ [Sinkhorn 1967] [Deming,Stephan 1940] v(0) = 1 Sinkhorn, revisited: u(`) = p ⇠v(`) v(`+1) = q ⇠T u(`) Proposition: ⇡ = diag(u )⇠ diag(v ) where ⇠ = e c . ⇡(`) = diag(u(`))⇠ diag(v(`)) ⇡(2`+1) = diag(p/⇡(2`)1)⇡(2`) ⇡(2`+2) = ⇡(2`+1) diag(q/⇡(2`+1),T 1)

Slide 36

Slide 36 text

Diagonal Scaling, Fast Implementation Sinkhorn algorithm: ! Only matrix-vector multiplications. ! Highly parallelizable. ⇡(0) = ⇠ [Sinkhorn 1967] [Deming,Stephan 1940] v(0) = 1 Sinkhorn, revisited: u(`) = p ⇠v(`) v(`+1) = q ⇠T u(`) Proposition: ⇡ = diag(u )⇠ diag(v ) where ⇠ = e c . ⇡(`) = diag(u(`))⇠ diag(v(`)) ⇡(2`+1) = diag(p/⇡(2`)1)⇡(2`) ⇡(2`+2) = ⇡(2`+1) diag(q/⇡(2`+1),T 1)

Slide 37

Slide 37 text

Translation-invariant Ground Metrics Assuming ci,j = 'i j on a discrete grid (e.g. periodic b.c.). ⇠v =  ? v where  def. = e '/

Slide 38

Slide 38 text

Translation-invariant Ground Metrics Assuming ci,j = 'i j on a discrete grid (e.g. periodic b.c.). Example: ci,j = || xi xj ||2,  = Gaussian filter. ⇠v =  ? v where  def. = e '/

Slide 39

Slide 39 text

Translation-invariant Ground Metrics Assuming ci,j = 'i j on a discrete grid (e.g. periodic b.c.). Example: ci,j = || xi xj ||2,  = Gaussian filter. v(`+1) = q ⇣  ? ⇣ p  ? v(`) 1 ⌘⌘ 1 Convolutive Sinkhorn: ⇠v =  ? v where  def. = e '/ a b def. = ( aibi)i, ? def. = convolution ! ⇠v computed in O ( N log( N )) operations (FFT, IIR approximation)

Slide 40

Slide 40 text

Translation-invariant Ground Metrics Assuming ci,j = 'i j on a discrete grid (e.g. periodic b.c.). Example: ci,j = || xi xj ||2,  = Gaussian filter. v(`+1) = q ⇣  ? ⇣ p  ? v(`) 1 ⌘⌘ 1 Convolutive Sinkhorn: ⇠v =  ? v where  def. = e '/ a b def. = ( aibi)i, ? def. = convolution p q ` ⇡(`) ! ⇠v computed in O ( N log( N )) operations (FFT, IIR approximation)

Slide 41

Slide 41 text

Overview • Optimal Transport • Regularized Transport • Wasserstein Barycenters • Heat Kernel Approximation

Slide 42

Slide 42 text

Wasserstein Barycenters For µ = P i p i xi , ⌫ = P j q j yj , W2(µ, ⌫) = W(p, q) for ci,j = || xi yj ||2 W2 def. = Wasserstein distance for measures.

Slide 43

Slide 43 text

Wasserstein Barycenters µ µ1 µ3 W2 (µ1 , µ ) W 2 (µ 2 ,µ ) W2 (µ3 ,µ ) µ2 µ? 2 argmin µ P k k W2(µk, µ) Barycenters of measures ( µk)k: P k k = 1 For µ = P i p i xi , ⌫ = P j q j yj , W2(µ, ⌫) = W(p, q) for ci,j = || xi yj ||2 W2 def. = Wasserstein distance for measures.

Slide 44

Slide 44 text

Wasserstein Barycenters µ µ1 µ3 W2 (µ1 , µ ) W 2 (µ 2 ,µ ) W2 (µ3 ,µ ) µ2 µ? 2 argmin µ P k k W2(µk, µ) Barycenters of measures ( µk)k: P k k = 1 If µ k = xk then µ? = P k kxk Generalizes Euclidean barycenter: For µ = P i p i xi , ⌫ = P j q j yj , W2(µ, ⌫) = W(p, q) for ci,j = || xi yj ||2 W2 def. = Wasserstein distance for measures.

Slide 45

Slide 45 text

µ exists and is unique. Theorem: if µ1 does not vanish on small sets, Wasserstein Barycenters [Agueh, Carlier, 2010] µ µ1 µ3 W2 (µ1 , µ ) W 2 (µ 2 ,µ ) W2 (µ3 ,µ ) µ2 µ? 2 argmin µ P k k W2(µk, µ) Barycenters of measures ( µk)k: P k k = 1 If µ k = xk then µ? = P k kxk Generalizes Euclidean barycenter: For µ = P i p i xi , ⌫ = P j q j yj , W2(µ, ⌫) = W(p, q) for ci,j = || xi yj ||2 W2 def. = Wasserstein distance for measures.

Slide 46

Slide 46 text

Entropic Wasserstein Barycenters Barycenter: min p2⌃N P k kW (pk, p) p p1 p2 p3

Slide 47

Slide 47 text

Entropic Wasserstein Barycenters In term of couplings: 8 k, p = ⇡k 1 where min { P k kKL(⇡k |⇠) ; (⇡k)k 2 C1 \ C2 } ⇠ = e c Barycenter: min p2⌃N P k kW (pk, p) p p1 p2 p3 C1 def. = (⇡k)k ; 8 k, ⇡T k 1 = pk C2 def. = {(⇡k)k ; 9p, 8 k, ⇡k 1 = p}

Slide 48

Slide 48 text

Entropic Wasserstein Barycenters In term of couplings: Proposition: p = Q k (⇡k 1) k 8 k, p = ⇡k 1 where min { P k kKL(⇡k |⇠) ; (⇡k)k 2 C1 \ C2 } ⇠ = e c Barycenter: min p2⌃N P k kW (pk, p) p p1 p2 p3 C1 def. = (⇡k)k ; 8 k, ⇡T k 1 = pk C2 def. = {(⇡k)k ; 9p, 8 k, ⇡k 1 = p} ProjC1 ( ⇡k)k = ✓ ⇡k diag ✓ pk ⇡T k 1 ◆◆ k ProjC2 ( ⇡k)k = ✓ diag ✓ p ⇡k 1 ◆ ⇡k ◆ k

Slide 49

Slide 49 text

Entropic Wasserstein Barycenters In term of couplings: Proposition: p = Q k (⇡k 1) k 8 k, p = ⇡k 1 where min { P k kKL(⇡k |⇠) ; (⇡k)k 2 C1 \ C2 } Sinkhorn-like algorithm: ⇠ = e c ( ⇡(2`+1) k )k = ProjC1 ( ⇡(2`) k )k ( ⇡(2`+2) k )k = ProjC2 ( ⇡(2`+1) k )k 8 k, ⇡(0) k = ⇠ Barycenter: min p2⌃N P k kW (pk, p) p p1 p2 p3 C1 def. = (⇡k)k ; 8 k, ⇡T k 1 = pk C2 def. = {(⇡k)k ; 9p, 8 k, ⇡k 1 = p} ProjC1 ( ⇡k)k = ✓ ⇡k diag ✓ pk ⇡T k 1 ◆◆ k ProjC2 ( ⇡k)k = ✓ diag ✓ p ⇡k 1 ◆ ⇡k ◆ k

Slide 50

Slide 50 text

Barycenter of 3 Shapes p1 p2 p3

Slide 51

Slide 51 text

Barycenter of 3-D Volumes

Slide 52

Slide 52 text

Barycenter of 3-D Volumes

Slide 53

Slide 53 text

Color Transfer µ ⌫ Input images: ( f, g ) (chrominance components) Input measures: f g µ(A) = U(f 1(A)), ⌫(A) = U(g 1(A))

Slide 54

Slide 54 text

Color Transfer µ ⌫ Input images: ( f, g ) (chrominance components) Input measures: f g µ(A) = U(f 1(A)), ⌫(A) = U(g 1(A))

Slide 55

Slide 55 text

Color Transfer µ ⌫ Input images: ( f, g ) (chrominance components) Input measures: f T T f g ˜ T g µ(A) = U(f 1(A)), ⌫(A) = U(g 1(A))

Slide 56

Slide 56 text

Raw image sequence Color Harmonization . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; Raw image sequence J. Rabin – GREYC, University of Caen Approximate Wasserstein Metric for Texture Synthesis and Mixing . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; Raw image sequence J. Rabin – GREYC, University of Caen Approximate Wasserstein Metric for Texture Synthesis and Mixing . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; Raw image sequence J. Rabin – GREYC, University of Caen Approximate Wasserstein Metric for Texture Synthesis and Mixing

Slide 57

Slide 57 text

Raw image sequence Compute Wasserstein barycenter Project on the barycenter Color Harmonization . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; Raw image sequence J. Rabin – GREYC, University of Caen Approximate Wasserstein Metric for Texture Synthesis and Mixing . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; Raw image sequence J. Rabin – GREYC, University of Caen Approximate Wasserstein Metric for Texture Synthesis and Mixing . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; Raw image sequence J. Rabin – GREYC, University of Caen Approximate Wasserstein Metric for Texture Synthesis and Mixing erstein Barycenter Sliced Wasserstein Barycenter Experimental results Applications Conclusion olor transfer Color harmonization of several images . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; stein Barycenter Sliced Wasserstein Barycenter Experimental results Applications Conclusion lor transfer Color harmonization of several images . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter; in Barycenter Sliced Wasserstein Barycenter Experimental results Applications Conclusion or transfer Color harmonization of several images . Step 1: compute Sliced-Wasserstein Barycenter of color statistics; . Step 2: compute Sliced-Wasserstein projection of each image onto the Barycenter;

Slide 58

Slide 58 text

Overview • Optimal Transport • Regularized Transport • Wasserstein Barycenters • Heat Kernel Approximation • Wasserstein Gradient Flows

Slide 59

Slide 59 text

Optimal Transport on Surfaces Triangulated mesh: M. Geodesic distance: dM.

Slide 60

Slide 60 text

Optimal Transport on Surfaces Ground cost: ci,j = dM(xi, xj) 2 . Triangulated mesh: M. Geodesic distance: dM. Level sets xi d ( xi, ·)

Slide 61

Slide 61 text

Optimal Transport on Surfaces Ground cost: ci,j = dM(xi, xj) 2 . Triangulated mesh: M. Geodesic distance: dM. Level sets xi d ( xi, ·) Computing c (Fast-Marching): N2 log( N ) ! too costly.

Slide 62

Slide 62 text

Entropic Transport on Surfaces Heat equation on M: @ u ( x, ·) = Mu ( x, ·) , u0( x, ·) = x

Slide 63

Slide 63 text

Entropic Transport on Surfaces Heat equation on M: Sinkhorn kernel: Theorem: [Varadhan] log( u ) !0 ! d2 M @ u ( x, ·) = Mu ( x, ·) , u0( x, ·) = x ⇠ = e d2 M ⇡ ut ⇡ Id L 1 M L

Slide 64

Slide 64 text

Barycenter on a Surface 1 p0 p1

Slide 65

Slide 65 text

Barycenter on a Surface 1 p0 p1 p0 p2 p3 p4 p6 p1 = (1, . . . , 1)/6

Slide 66

Slide 66 text

MRI Data Procesing [with A. Gramfort] ariational Wasserstein Problems Labels L2 barycenter W barycenter Ground cost ci,j = dM(xi, xj): geodesic on cortical surface.

Slide 67

Slide 67 text

Conclusion Source image (X) Style image (Y) Source ima J. Rabin Wasserstein Regu Histogram features in imaging and machine learning. ! histograms are now trendy!

Slide 68

Slide 68 text

Conclusion EMD Entropy Discrete analog: Cuturi, NIPS 2013 Entropic regularization for optimal transport. Source image (X) Style image (Y) Source ima J. Rabin Wasserstein Regu Histogram features in imaging and machine learning. ! histograms are now trendy!

Slide 69

Slide 69 text

Conclusion EMD Entropy Discrete analog: Cuturi, NIPS 2013 Entropic regularization for optimal transport. Source image (X) Style image (Y) Source ima J. Rabin Wasserstein Regu Histogram features in imaging and machine learning. ! histograms are now trendy! Barycenters in Wasserstein space: Figure 4: Simulation results with focal random signals generated in are