Slide 97
Slide 97 text
References
[QMCPy] S.-C. T. Choi, F. J. Hickernell, R. Jagadeeswaran, M. McCourt, and A. Sorokin, QMCPy: A quasi-
Monte Carlo Python library (versions 1–1.5), 2024.
[DKP22] J. Dick, P. Kritzer, and F. Pillichshammer, Lattice rules: Numerical integration, approximation, and
discrepancy, Springer Series in Computational Mathematics, Springer Cham, 2022.
[DP10] J. Dick and F. Pillichshammer, Digital nets and sequences: Discrepancy theory and quasi-Monte
Carlo integration, Cambridge University Press, Cambridge, 2010.
GKS23] A. D. Gilbert, F. Y. Kuo, and I. H. Sloan, Analysis of preintegration followed by quasi-Monte Carlo
integration for distribution functions and densities, SIAM J. Numer. Anal. 61 (2023), 135–166.
[G13] M. Giles, Multilevel Monte Carlo methods, Monte Carlo and Quasi-Monte Carlo Methods 2012 (J.
Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds.), Springer Proceedings in Mathematics and
Statistics, vol. 65, Springer-Verlag, Berlin, 2013.
[G04] P. Glasserman, Monte Carlo methods in
fi
nancial engineering, Applications of Mathematics, vol. 53,
Springer-Verlag, New York, 2004.