Slide 1

Slide 1 text

Dr Jonathan Skelton Department of Chemistry, University of Manchester ([email protected]) Controlling the heat transport in thermoelectric materials

Slide 2

Slide 2 text

Acknowledgements Dr Jonathan Skelton ... plus other students, mentors and collaborators too numerous to mention MC16, 6th July 2023 | Slide 2

Slide 3

Slide 3 text

The global energy challenge MC16, 6th July 2023 | Slide 3 31 % 23 % 20 % 19 % 3 % 1000 MW nuclear power plant: o 650 MW waste heat o 3 % β‰ˆ 20 MW β‰ˆ 50,000 homes 300-500 W from exhaust gases: o 2 % lower fuel consumption o 2.4 Mt reduction in CO2 Thermoelectric generators allow waste heat to be recovered as electricity TEGs with ~3 % energy recovery (𝑍𝑇 = 1) are considered industrially viable 1. Provisional UK greenhouse gas emissions national statistics (published March 2022) 2. EPSRC Thermoelectric Network Roadmap (2018) Dr Jonathan Skelton

Slide 4

Slide 4 text

Thermoelectric materials Dr Jonathan Skelton 𝑍𝑇 = 𝑆!𝜎 πœ…"#" + πœ…#$% 𝑇 𝑆 - Seebeck coefficient 𝜎 - electrical conductivity πœ…!"! - electronic thermal conductivity πœ…"#$ - lattice thermal conductivity G. Tan et al., Chem. Rev. 116 (19), 12123 (2016) MC16, 6th July 2023 | Slide 4

Slide 5

Slide 5 text

The IV-VI chalcogenides Dr Jonathan Skelton L.-D. Zhao et al., Nature 508, 373 (2014) MC16, 6th July 2023 | Slide 5

Slide 6

Slide 6 text

A comparative study Dr Jonathan Skelton GeSe GeTe SnSe SnTe π‘ƒπ‘›π‘šπ‘Ž ΓΌ ΓΌ ΓΌ ΓΌ πΆπ‘šπ‘π‘š ΓΌ 𝑅3π‘š ΓΌ ΓΌ ΓΌ πΉπ‘š0 3π‘š ΓΌ ΓΌ π‘ƒπ‘›π‘šπ‘Ž πΆπ‘šπ‘π‘š 𝑅3π‘š πΉπ‘š* 3π‘š MC16, 6th July 2023 | Slide 6

Slide 7

Slide 7 text

Modelling thermal conductivity A. Togo et al., Phys. Rev. B 91, 094306 (2015) Dr Jonathan Skelton The simplest model for πœ…"#$$ is the single-mode relaxation time approximation (SM-RTA) - a closed solution to the phonon Boltzmann transport equations 𝜿!"## = 1 𝑁𝑉 & $ 𝜿$ = 1 𝑁𝑉 & $ 𝐢$ 𝒗$ βŠ— 𝒗$ 𝜏$ 𝐢% - phonon heat capacities 𝒗% - phonon group velocities 𝜏% - phonon lifetimes (inverse linewidths Ξ“% ) 𝑁 - number of 𝒒 in summation 𝑉 - unit cell volume MC16, 6th July 2023 | Slide 7

Slide 8

Slide 8 text

A comparative study Dr Jonathan Skelton πœ…π₯𝐚𝐭𝐭 (𝑇 = 300 K) [W m-1 K-1] SnSe (πΆπ‘šπ‘π‘š) 0.96 SnTe (π‘ƒπ‘›π‘šπ‘Ž) 1.09 GeTe (π‘ƒπ‘›π‘šπ‘Ž) 1.32 SnSe (π‘ƒπ‘›π‘šπ‘Ž) 1.36 GeTe (πΉπ‘š+ 3π‘š) 1.57 GeSe (πΉπ‘š+ 3π‘š) 1.67 GeSe (π‘ƒπ‘›π‘šπ‘Ž) 2.36 SnTe (𝑅3π‘š) 4.18 GeTe (𝑅3π‘š) 4.36 SnTe (πΉπ‘š+ 3π‘š) 5.01 MC16, 6th July 2023 | Slide 8

Slide 9

Slide 9 text

Group velocities vs. lifetimes Dr Jonathan Skelton 𝜿./00 β‰ˆ 𝜏1234Γ— 1 𝑁𝑉 2 5 𝜿5 𝜏5 = 1 𝑁𝑉 2 5 𝐢5 𝒗5 βŠ— 𝒗5 Γ—πœ1234 J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33, 164002 (2021) J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021) MC16, 6th July 2023 | Slide 9

Slide 10

Slide 10 text

Group velocities vs. lifetimes Dr Jonathan Skelton πœ…π₯𝐚𝐭𝐭 [W m-1 K-1] ⁄ πœ…π₯𝐚𝐭𝐭 𝝉𝐂𝐑𝐓𝐀 [W m-1 K-1 ps-1] 𝝉𝐂𝐑𝐓𝐀 [ps] SnTe (π‘ƒπ‘›π‘šπ‘Ž) 1.09 0.27 3.98 GeTe (π‘ƒπ‘›π‘šπ‘Ž) 1.32 0.34 3.91 SnSe (π‘ƒπ‘›π‘šπ‘Ž) 1.36 0.35 3.89 GeSe (π‘ƒπ‘›π‘šπ‘Ž) 2.36 0.39 6.03 SnTe (𝑅3π‘š) 4.18 0.69 6.07 GeTe (𝑅3π‘š) 4.36 0.87 5.01 SnTe (πΉπ‘š+ 3π‘š) 5.01 1.07 4.67 SnSe (πΆπ‘šπ‘π‘š) 0.96 1.09 0.88 GeTe (πΉπ‘š+ 3π‘š) 1.67 2.99 0.56 GeSe (πΉπ‘š+ 3π‘š) 1.57 3.29 0.48 MC16, 6th July 2023 | Slide 10

Slide 11

Slide 11 text

Group velocities vs. lifetimes Dr Jonathan Skelton πœ…π₯𝐚𝐭𝐭 [W m-1 K-1] ⁄ πœ…π₯𝐚𝐭𝐭 𝝉𝐂𝐑𝐓𝐀 [W m-1 K-1 ps-1] 𝝉𝐂𝐑𝐓𝐀 [ps] GeSe (πΉπ‘š+ 3π‘š) 1.57 3.29 0.48 GeTe (πΉπ‘š+ 3π‘š) 1.67 2.99 0.56 SnSe (πΆπ‘šπ‘π‘š) 0.96 1.09 0.88 SnSe (π‘ƒπ‘›π‘šπ‘Ž) 1.36 0.35 3.89 SnTe (π‘ƒπ‘›π‘šπ‘Ž) 1.32 0.34 3.91 SnTe (𝑅3π‘š) 1.09 0.27 3.98 SnTe (πΉπ‘š+ 3π‘š) 5.01 1.07 4.67 GeTe (𝑅3π‘š) 4.36 0.87 5.01 GeSe (π‘ƒπ‘›π‘šπ‘Ž) 2.36 0.39 6.03 SnTe (𝑅3π‘š) 4.18 0.69 6.07 MC16, 6th July 2023 | Slide 11

Slide 12

Slide 12 text

Anharmonicity vs. β€œselection rules” Ξ“5 = 36πœ‹ ℏ8 2 5&5&& Ξ¦955&5&& 8Γ—{ 𝑛5& + 𝑛5&& + 1 𝛿 πœ” βˆ’ πœ”5& βˆ’ πœ”5&& + 𝑛5& βˆ’ 𝑛5&& 𝛿 πœ” + πœ”5& βˆ’ πœ”5&& βˆ’ 𝛿 πœ” βˆ’ πœ”5& + πœ”5&& } Decay Collision Three-phonon interaction strength (includes conservation of momentum) Conservation of energy Dr Jonathan Skelton A. Togo et al., Phys. Rev. B 91, 094306 (2015) MC16, 6th July 2023 | Slide 12

Slide 13

Slide 13 text

Anharmonicity vs. β€œselection rules” Dr Jonathan Skelton 𝜏: = 1 2πœ‹Ξ“5 Ξ“5 β‰ˆ 36πœ‹ ℏ8 𝑁8 (𝒒5 , πœ”5 )×𝑃5 and A. Togo et al., Phys. Rev. B 91, 094306 (2015) B. Wei, J. Flitcroft and J. M. Skelton, Molecules 27 (19), 6431 (2022) MC16, 6th July 2023 | Slide 13

Slide 14

Slide 14 text

Anharmonicity vs. β€œselection rules” Dr Jonathan Skelton π‘ƒπ‘›π‘šπ‘Ž Other phases Other phases π‘ƒπ‘›π‘šπ‘Ž 𝜏: = 1 2πœ‹Ξ“5 Ξ“5 β‰ˆ 36πœ‹ ℏ8 𝑁8 (𝒒5 , πœ”5 )×𝑃5 and MC16, 6th July 2023 | Slide 14

Slide 15

Slide 15 text

Anharmonicity vs. β€œselection rules” Dr Jonathan Skelton 𝝉𝐂𝐑𝐓𝐀 [ps] ; 𝑷× πŸ‘π’π’‚ 𝟐 [eV2] ⁄ ; π‘΅πŸ πŸ‘π’π’‚ 𝟐 [THz-1] SnTe (π‘ƒπ‘›π‘šπ‘Ž) 3.98 9.07 Γ— 10-9 1.70 Γ— 10-2 SnSe (π‘ƒπ‘›π‘šπ‘Ž) 3.89 1.20 Γ— 10-8 1.31 Γ— 10-2 GeTe (π‘ƒπ‘›π‘šπ‘Ž) 3.91 1.35 Γ— 10-8 1.15 Γ— 10-2 GeSe (π‘ƒπ‘›π‘šπ‘Ž) 6.03 1.36 Γ— 10-8 7.44 Γ— 10-3 SnTe (𝑅3π‘š) 6.07 5.20 Γ— 10-8 1.93 Γ— 10-3 GeTe (𝑅3π‘š) 5.01 8.97 Γ— 10-8 1.36 Γ— 10-3 SnTe (πΉπ‘š+ 3π‘š) 4.67 1.09 Γ— 10-7 1.20 Γ— 10-3 SnSe (πΆπ‘šπ‘π‘š) 0.88 1.46 Γ— 10-7 4.74 Γ— 10-3 GeTe (πΉπ‘š+ 3π‘š) 0.56 1.31 Γ— 10-6 8.35 Γ— 10-4 GeSe (πΉπ‘š+ 3π‘š) 0.48 2.24 Γ— 10-6 5.69 Γ— 10-4 Calculate an averaged number of scattering pathways from 𝜏'()* and 7 𝑃: 8 𝑁+ = ℏ! ,+-! . /0"#$% MC16, 6th July 2023 | Slide 15

Slide 16

Slide 16 text

Trends in structure type Dr Jonathan Skelton π‘ƒπ‘›π‘šπ‘Ž πΆπ‘šπ‘π‘š 𝑅3π‘š πΉπ‘š* 3π‘š Lower 𝒗1 : smaller ⁄ πœ…"#$$ 𝜏'()* Stronger anharmonicity: larger 7 𝑃 β†’ shorter 𝜏'()* Larger scattering phase space: larger 8 𝑁+ β†’ shorter 𝜏'()* MC16, 6th July 2023 | Slide 16

Slide 17

Slide 17 text

Interpretation: group velocities Dr Jonathan Skelton http://www-personal.umich.edu/~alberliu/writing/condensedmatter/1dlatticenormalmodes.pdf MC16, 6th July 2023 | Slide 17 𝑣% β‰ˆ π‘Ž π‘˜ π‘š 𝑣% β‰ˆ 2π‘Ž π‘˜Γ—π‘” 2π‘š(π‘˜ + 𝑔) π‘˜ 𝑔 π‘Ž 2π‘Ž π‘˜ Equiv. bonds (𝑔 = π‘˜) Broken chain (𝑔 = 0) π‘š π‘š π‘š π‘š π‘š π‘š π‘š π‘š

Slide 18

Slide 18 text

A. Walsh et al., Chem. Soc. Rev. 40, 4455 (2011) M. J. Smiles et al., J. Mater. Chem. A 9, 22440 (2021) Interpretation: anharmonicity Dr Jonathan Skelton MC16, 6th July 2023 | Slide 18

Slide 19

Slide 19 text

Trends in structure type Dr Jonathan Skelton πΆπ‘šπ‘π‘š SnSe: ? Low symmetry ΓΌ Large(-ish) cell (𝑛2 = 4) ΓΌ Sn constrained to a locally-symmetric environment πœ‹-cubic SnSe: ? High symmetry ΓΌ (Very) large cell (𝑛2 = 64) Γ» Sn local geometry similar to π‘ƒπ‘›π‘šπ‘Ž phase R. E. Abutbul et al., CrystEngComm 18, 1918 (2016) MC16, 6th July 2023 | Slide 19

Slide 20

Slide 20 text

Summary Dr Jonathan Skelton The SM-RTA model provides insight into the πœ…"#$$ at the level of individual phonon modes, which can be analysed to quantify the separate contributions of: o Group velocity vs. lifetimes - the CRTA model o Anharmonicity vs. selection rules - the constant interaction-strength model For a series of ten chalcogenides, we find that: o Low group velocities are favoured by complex structures with large unit cells o Strong phonon anharmonicity is favoured by structures where the tetrel atoms are constrained to locally-symmetric environments... o ... but less symmetric structures allow for a large scattering phase space These competing factors are optimally balanced in πΆπ‘šπ‘π‘š SnSe, which has: o a larger and lower-symmetry unit cell compared to 𝑅3π‘š/πΉπ‘š0 3π‘š phases... o ... but with the Sn atoms are constrained to a locally symmetric environment The trends in group velocity can be explained in terms of bonding inhomogeneity The trends in anharmonicity can be explained in terms of the revised lone pair model MC16, 6th July 2023 | Slide 20

Slide 21

Slide 21 text

bit.ly/3JFclWU These slides are available on Speaker Deck: