Slide 1

Slide 1 text

Tugdual Grall Technical Evangelist [email protected] @tgrall Introduction Philippe Charriere Directeur Technique [email protected] @k33g_org

Slide 2

Slide 2 text

Introduction to NoSQL with MongoDB Tugdual Grall Technical Evangelist [email protected] @tgrall Philippe Charriere Directeur Technique [email protected] @k33g_org

Slide 3

Slide 3 text

Tugdual “Tug” Grall • MongoDB – Technical Evangelist • Couchbase – Technical Evangelist • eXo – CTO • Oracle – Developer/Product Manager – Mainly Java/SOA • Developer in consulting firms {“about” : “me”} • Web – @tgrall – http://blog.grallandco.com – tgrall • NantesJUG cofounder
 • Pet Project – http://www.resultri.com
 • [email protected][email protected]

Slide 4

Slide 4 text

Why MongoDB?

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

The relational model : 1970

Slide 7

Slide 7 text

Big Data

Slide 8

Slide 8 text

Big Users http://www.theconnectivist.com/    &  Cisco

Slide 9

Slide 9 text

Living in the Post-transactional Future Order-processing systems largely “done” (RDBMS); new focus on better search and recommendations or adapting prices on the fly (NoSQL) Vast majority of its engineering is focused on recommending better movies (NoSQL), not processing monthly bills (RDBMS) Easy part is processing the credit card (RDBMS). Hard part is making it location aware, so it knows where you are and what you’re buying (NoSQL)

Slide 10

Slide 10 text

Stay up! .  .  . Application Scale out Add more “Web” servers RDBMS Scale Up Get bigger server RDBMS App  Server

Slide 11

Slide 11 text

NoSQL to Scale out! .  .  . Application Scale out Add more “Web” servers NoSQL Scale Out Add more servers NoSQL App  Server .  .  .

Slide 12

Slide 12 text

RDBMS Is Like a Spreadsheet

Slide 13

Slide 13 text

With “Relations” Between Rows

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

And makes things hard to change Name Age Phone Email New Column New Table New Table New Column

Slide 16

Slide 16 text

Relational Database Challenges Data Types Unstructured data Semi-structured data Polymorphic data Agile Development Iterative Short development cycles New workloads Volume of Data Petabytes of data Trillions of records Millions of queries/sec New Architectures Horizontal scaling Commodity servers Cloud computing

Slide 17

Slide 17 text

Operational Database Landscape Scalability & Performance Depth of Functionality key/value stores wide column RDBMS MongoDB

Slide 18

Slide 18 text

Data Model

Slide 19

Slide 19 text

Product Catalog

Slide 20

Slide 20 text

Baseball Bat -3 length to weight ratio 2-5/8" barrel diameter Two-piece construction R2 alloy barrel provides outstanding durability, performance and "pop" R2 composite handle shifts weight into the bat's knob for ultra-fast swing speeds Rifle Barrel design removes weight from the barrel for thinner wall thickness Acoustic barrel offers that sweet-sounding "ping" Contact grip helps eliminate sting and vibration AIR Elite is RIP-IT's® fastest BBCOR bat and the one with the most performance BBCOR certified - approved for high school and collegiate play Includes RIP-IT's® "Love It Or Return It" 30 Day Refund Policy with free return shipping Manufacturer's warranty: 400 days Made in the USA Model: B1403E

Slide 21

Slide 21 text

Bat Product Table Category Model Name Brand Length to weight ratio Barrel Dia Type Barrel Handle Cert. Country Price Bat B1403E Air Elite RIP-IT -3 2 5/8 Composite R2 Alloy R2 composite BBCOR USA $399.99 Bat B1403 Prototype RIP-IT -3 2 5/8 One-piece R1 Alloy R1 Alloy BBCOR USA $199.99 Bat MCB1B One Marucci -3 2 5/8 One-piece AZ3000 aluminum AZ3000 aluminum BBCOR Imported $199.99 Bat BB14S1 S1 Easton -3 2 5/8 Composite IMX SIC Black Carbon BBCOR China $399.99

Slide 22

Slide 22 text

Lets Add Gloves Size: 12" Infield/Outfield/Pitcher model 2-Piece Web pattern Most popular MLB® pattern among pitchers Pro Stock® American steerhide leather offers rugged durability and a superior feel Dual-Welting™ on "exposed edges" of the fingers helps maintain pocket shape and durability Pro Stock™ hand-designed pattern for unbeatable craftsmanship Dri-Lex® ultra-breathable wrist lining repels moisture from your hand Black leather with rich brown embellishments Pattern: B212 Model: WTA2000BBB212 Wilson

Slide 23

Slide 23 text

Bat and Glove Product Table Category Model Name Brand Length to weight ratio Barrel Dia Type Barrel Handle Cert. Country Price Bat B1403E Air Elite RIP-IT -3 2 5/8 Composite R2 Alloy R2 composite BBCOR USA $399.99 Bat B1403 Prototype RIP-IT -3 2 5/8 One-piece R1 Alloy R1 Alloy BBCOR USA $199.99 Bat MCB1B One Marucci -3 2 5/8 One-piece AL AL BBCOR Imported $199.99 Bat BB14S1 S1 Easton -3 2 5/8 Composite IMX SIC Black Carbon BBCOR China $399.99 Category Model Name Brand Size Position Pattern Web Pattern Material Color Country Price Glove WTA2000B BB212 A2000 Wilson 12" Infield B212 2-piece Leather black Vietnam $299.99 Glove PRO112PT HOH Pro Rawlings 11.25" Outfield Pro taper Modified Trap-Eze Horween Leather black China $229.99

Slide 24

Slide 24 text

Add some baseballs Cover: Full grain leather for excellent durability Core: Cushioned cork core Additions/Technologies: Made to the exact specifications of MLB Stitching/Seams: 108 classic red stitches/Rawlings® Major League seaming League/Certification(s): MLB Balls included per purchase: individual Recommended Age: All ages Model : ROMLB Rawlings

Slide 25

Slide 25 text

Bat and Glove Product Table Category Model Name Brand Length to weight ratio Barrel Dia Type Barrel Handle Cert. Country Price Bat B1403E Air Elite RIP-IT -3 2 5/8 Composite R2 Alloy R2 composite BBCOR USA $399.99 Bat B1403 Prototype RIP-IT -3 2 5/8 One-piece R1 Alloy R1 Alloy BBCOR USA $199.99 Bat MCB1B One Marucci -3 2 5/8 One-piece AL AL BBCOR Imported $199.99 Bat BB14S1 S1 Easton -3 2 5/8 Composite IMX SIC Black Carbon BBCOR China $399.99 Category Model Name Brand Size Position Pattern Web Pattern Material Color Country Price Glove WTA2000B BB212 A2000 Wilson 12" Infield B212 2-piece Leather black Vietnam $299.99 Glove PRO112PT HOH Pro Rawlings 11.25" Outfield Pro taper Modified Trap-Eze Horween Leather black China $229.99 Category Model Name Brand Color Cover Core Cert. Country Price Baseball DICRLLB1 PBG Little League Rawlings white Leather Cork
 rubber Little League China $4.99 Baseball ROML MLB Rawlings white Leather cork China $6.99

Slide 26

Slide 26 text

Sparse Table Category Model Name Brand Length to weight ratio Barrel Dia Type Barrel Handle Certificati on Country Price Size Position Pattern Web Pattern Material Color Cover Core Bat B1403E Air  Elite RIP-­‐IT -­‐3 2  5/8 Composite R2  Alloy R2   composite BBCOR USA $399.99   Bat B1403 Prototype RIP-­‐IT -­‐3 2  5/8 One-­‐piece R1  Alloy R1  Alloy BBCOR USA $199.99   Bat MCB1B One Marucci -­‐3 2  5/8 One-­‐piece AZ3000   aluminum AZ3000   aluminum BBCOR Imported $199.99   Bat BB14S1 S1 Easton -­‐3 2  5/8 Composite IMX SIC  Black   Carbon BBCOR China $399.99   Glove WTA2000BB B212 A2000 Wilson Vietnam $299.99   12" Infield B212 2-­‐piece Leather black Glove PRO112PT HOH  Pro Rawlings China $229.99   11.25" Outfield Pro  taper Modified   Trap-­‐Eze Horween   Leather black Baseball DICRLLB1PB G Little  League Rawlings Little  League China $4.99   white Leather cork  and   rubber Baseball ROML MLB Rawlings China $6.99   white Leather cork Continue adding columns as you add new products

Slide 27

Slide 27 text

Maybe this design will work better prodID property value 1 length/weight -3 1 barrel dia 2 5/8 1 type composite 1 certification BBCOR … 5 size 12 5 position infield 5 pattern B212 5 material leather 5 color black … 8 color white 8 cover leather 8 core cork prodID Category Model Name Brand Country Price 1 Bat B1403E Air Elite RIP-IT USA $399.99 2 Bat B1403 Prototype RIP-IT USA $199.99 3 Bat MCB1B One Marucci Imported $199.99 4 Bat BB14S1 S1 Easton China $399.99 5 Glove WTA2000BBB 212 A2000 Wilson Vietnam $299.99 6 Glove PRO112PT HOH Pro Rawlings China $229.99 7 Baseball DICRLLB1PBG Little League Rawlings China $4.99 8 Baseball ROML MLB Rawlings China $6.99

Slide 28

Slide 28 text

MongoDB uses “Documents” { category: “glove”, model: “PRO112PT”, name: “Air Elite”, brand: “Rawlings”, price: 229.99, available: Date(“2013-03-31”) } Fields Values Field values are typed string number date

Slide 29

Slide 29 text

Documents are rich structures { category: “glove”, model: “PRO112PT”, name: “Air Elite”, brand: “Rawlings”, price: 229.99, available: Date(“2013-03-31”), position: [“infield”, “outfield”, “pitcher”] } Fields  can  contain  arrays

Slide 30

Slide 30 text

Documents are rich structures { category: “glove”, model: “PRO112PT”, name: “Air Elite”, brand: “Rawlings”, price: 229.99, available: Date(“2013-03-31”), position: [“infield”, “outfield”, “pitcher”], endorsed: {name: “Ryan Howard”, team: “Phillies”, position: “first base”}, } Fields can contain sub- documents

Slide 31

Slide 31 text

Documents are rich structures { category: “glove”, model: “PRO112PT”, name: “Air Elite”, brand: “Rawlings”, price: 229.99, available: Date(“2013-03-31”), position: [“infield”, “outfield”, “pitcher”], endorsed: {name: “Ryan Howard”, team: “Phillies”, position: “first base”}, history: [{date: Date(“2013-03-31”), price: 279.99}, {date: Date(“2013-06-01”), price: 259.79}, {date: Date(“2013-08-15”), price: 229.99}] } Fields can contain an array of sub-documents

Slide 32

Slide 32 text

Variation is easy with document model { category: bat, model: B1403E, name: Air Elite, brand: “Rip-IT”, price: 399.99 diameter: “2 5/8”, barrel: R2 Alloy, handle: R2 Composite, type: composite, } { category: glove, model: PRO112PT, name: Air Elite, brand: “Rawlings”, price: “229.99” size: 11.25, position: outfield, pattern: “Pro taper”, material: leather, color: black } { category: ball, model: ROML, name: MLB, brand: “Rawlings”, price: “6.99” cover: leather, core: cork, color: white }

Slide 33

Slide 33 text

{ "_id" : 45218468309, "date" : ISODate("2015-01-28T09:40:50.615Z"), "customer" : { "id" : 654321, "name" : "John Doe" }, "ship_to" : { "name" : "John Doe", "street" : “Rue du Code", "city" : “69000 Lyon", }, "items" : [ { "sku" : "WA34R", "description" : "Wireless Qwerty Keyboard", "quantity" : 1, "unit_price" : 41.5, "price" : 41.5, "vat" : 20 }, { "sku" : "MW003", "description" : "MiWatch", "quantity" : 2, "unit_price" : 245, "price" : 490, "vat" : 20 } ], "price" : { "total" : 531.5 , "vat" : 106.3 } } Document Data Model Relational MongoDB

Slide 34

Slide 34 text

Document Data Model Relational MongoDB {   first_name: ‘Paul’,   surname: ‘Miller’,   city: ‘London’,   location: [45.123,47.232],   cars: [   { model: ‘Bentley’,   year: 1973,   value: 100000, … },   { model: ‘Rolls Royce’,   year: 1965,   value: 330000, … }   }   }

Slide 35

Slide 35 text

Document Model Benefits Agility and flexibility Data model supports business change Rapidly iterate to meet new requirements Intuitive, natural data representation Eliminates ORM layer Developers are more productive Reduces the need for joins, disk seeks Programming is more simple Performance delivered at scale { _id : ObjectId("4c4ba5e5e8aabf3"), employee_name: "Dunham, Justin", department : "Marketing", title : "Product Manager, Web", report_up: "Neray, Graham", pay_band: “C", benefits : [ { type : "Health", plan : "PPO Plus" }, { type : "Dental", plan : "Standard" } ] }

Slide 36

Slide 36 text

Morphia MEAN  Stack Java Python Perl Ruby Support for the most popular languages and frameworks Drivers & Ecosystem

Slide 37

Slide 37 text

Demonstration

Slide 38

Slide 38 text

MongoDB Overview

Slide 39

Slide 39 text

‹#› CREATE APPLICATIONS 
 NEVER BEFORE POSSIBLE AGILE SCALABLE

Slide 40

Slide 40 text

‹#› MongoDB GENERAL PURPOSE DOCUMENT DATABASE OPEN-SOURCE

Slide 41

Slide 41 text

THE LARGEST ECOSYSTEM 9,000,000+
 MongoDB Downloads 200,000+
 Online Education Registrants 35,000+
 MongoDB User Group Members 35,000+
 MongoDB Management Service (MMS) Users 750+
 Technology and Services Partners 2,000+
 Customers Across All Industries

Slide 42

Slide 42 text

‹#› MongoDB and Enterprise IT Stack

Slide 43

Slide 43 text

MongoDB, Inc. 400+ employees 2,000+ customers Over $311 million in funding 13 offices around the world

Slide 44

Slide 44 text

High Availability & Scalability

Slide 45

Slide 45 text

High Availability Replica Set – two or more copies
 Self-healing shard
 Addresses availability considerations: High Availability Disaster Recovery Maintenance
 Deployment Flexibility Data locality to users Workload isolation: operational & analytics

Slide 46

Slide 46 text

Scalability Three types of sharding: hash-based, range-based, tag-aware Increase or decrease capacity as you go Automatic balancing

Slide 47

Slide 47 text

Query Routing Multiple query optimization models Each sharding option appropriate for different apps

Slide 48

Slide 48 text

Demonstration

Slide 49

Slide 49 text

Deployment Architectures & Operations

Slide 50

Slide 50 text

Single Data Center Automated failover Tolerates server failures Tolerates rack failures Number of replicas defines failure tolerance

Slide 51

Slide 51 text

Active/Active Data Center Tolerates server, rack, data center failures, network partitions

Slide 52

Slide 52 text

Read Global/Write Local

Slide 53

Slide 53 text

Replicate Data Near Users

Slide 54

Slide 54 text

Single-click provisioning, scaling & upgrades, admin tasks Monitoring, with charts, dashboards and alerts on 100+ metrics Backup and restore, with point-in-time recovery, support for sharded clusters MongoDB Ops Manager The Best Way to Manage MongoDB In Your Data Center Up to 95% Reduction in Operational Overhead

Slide 55

Slide 55 text

How MongoDB Ops Manager helps you Scale  Easily Meet  SLAs Best  Practices,   Automated Cut  Management   Overhead

Slide 56

Slide 56 text

How Ops Manager Works Ops Manager mongod mongod mongod Agent Agent Agent New Config. N ew C onfig. New Config.

Slide 57

Slide 57 text

Integrates with Existing Infrastructure

Slide 58

Slide 58 text

*Included with MongoDB Enterprise Advanced BUSINESS NEEDS SECURITY FEATURES Authentication SCRAM, LDAP*, Kerberos*, x.509 Certificates Authorization Built-in Roles, User-Defined Roles, Field-Level Redaction Auditing Admin, DML, DDL, Role-based Encryption Network: SSL (with FIPS 140-2)*, Disk: Partner Solutions Enterprise-Grade Security

Slide 59

Slide 59 text

Scalability & Performance

Slide 60

Slide 60 text

Scale 250M Ticks/Sec 300K+ Ops/Sec 500K+ Ops/Sec Fed Agency Performance 1,400 Servers 1,000+ Servers 250+ Servers Entertainment Co. Cluster Petabytes 10s of billions of objects 13B documents Data Asian Internet Co.

Slide 61

Slide 61 text

Example: MongoDB Management Service Cloud service for managing MongoDB systems 100+ system metrics visualized and alerted 35,000+ MongoDB systems submitting data every 60 seconds 90% updates, 10% reads ~30,000 updates/second ~3.2B operations/day Eight x86-64 servers

Slide 62

Slide 62 text

MongoDB Performance* Top 5 Marketing Firm Government Agency Top 5 Investment Bank Data Key/value 10+ fields, arrays, nested documents 20+ fields, arrays, nested documents Queries Key-based 1 – 100 docs/query   80/20 read/write Compound queries   Range queries   MapReduce   20/80 read/write Compound queries   Range queries   50/50 read/write Servers ~250 ~50 4 Ops/sec 1,200,000 500,000 30,000 * These figures are provided as examples. Your application governs your performance.

Slide 63

Slide 63 text

For More Information Resource Location Case Studies mongodb.com/customers Presentations mongodb.com/presentations Free Online Training education.mongodb.com Webinars and Events mongodb.com/events Documentation docs.mongodb.org MongoDB Downloads mongodb.com/download Additional Info [email protected]

Slide 64

Slide 64 text

Tugdual Grall Technical Evangelist [email protected] @tgrall Questions?

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

Appendix - Data Model

Slide 67

Slide 67 text

Dynamic Schema { policyNum: 123, type: auto, customerId: abc, payment: 899, deductible: 500, make: Taurus, model: Ford, VIN: 123ABC456, } { policyNum: 456, type: life, customerId: efg, payment: 240,

Slide 68

Slide 68 text

Developers Are More Productive

Slide 69

Slide 69 text

Developers Are More Productive

Slide 70

Slide 70 text

Comparing Data Models MongoDB Key/Value Relational Rich Data Model Yes No No Dynamic Schema Yes Yes No Typed Data Yes No Yes Data Locality Yes Yes No Field Updates Yes No Yes Easy for Programmers Yes Yes No

Slide 71

Slide 71 text

Appendix - Query Model

Slide 72

Slide 72 text

Indexes // Index nested documents > db.customers.ensureIndex( “policies.agent”:1 ) > db.customers.find({‘policies.agent’:’Fred’}) // geospatial index > db.customers.ensureIndex( “property.location”: “2d” ) > db.customers.find( “property.location” : { $near : [22,42] } ) // text index > db.customers.ensureIndex( “policies.notes”: “text” )

Slide 73

Slide 73 text

Query Operators Conditional  Operators     $all,  $exists,  $mod,  $ne,  $in,  $nin,  $nor,  $or,  $size,  $type   $lt,  $lte,  $gt,  $gte   //  find  customers  with  any  claims   >  db.customers.find(  {claims:  {$exists:  true  }}  )   //  find  customers  matching  a  regular  expression   >  db.customers.find(  {last:  /^rog*/i  }  )   //  count  customers  by  city   >  db.customers.find(  {city:  ‘Philadelphia’}  ).count()

Slide 74

Slide 74 text

Comparing Query Models MongoDB Key/Value Relational Key/Value Yes Yes Yes Secondary Indexes Yes No Yes Index Intersection Yes No Yes Range Queries Yes No Yes Geospatial Yes No Yes Text Search Yes No Yes Aggregation Yes No Yes MapReduce Yes Yes No

Slide 75

Slide 75 text

Appendix - Deployment Model & Operations

Slide 76

Slide 76 text

Active/Standby Data Center Tolerates server and rack failure Standby data center

Slide 77

Slide 77 text

Comparing Operational Capabilities MongoDB Key/Value Relational Automatic Failover Yes Limited Yes Data Center Awareness Yes No Expensive Add- Ons Continuous Backup Yes No Yes Point in Time Recovery Yes No Yes Caching Layer Needed No No Often Automatic Sharding Yes Yes No

Slide 78

Slide 78 text

Appendix - GridFS, MongoDB Connector for Hadoop

Slide 79

Slide 79 text

Store files larger than 16MB i.e. video, images - Load chunks without reading entire file into memory Atomically sync files with their metadata Shard and distribute around the cluster GridFS doc.jpg doc.jpg (meta data) doc.jpg (1) GridFS API fs.files fs.chunks Driver

Slide 80

Slide 80 text

MongoDB & Hadoop Applications powered by Analysis powered by Low latency Rich fast querying Flexible indexing Ad hoc aggregations in database Known data relationships Great at looking at any subset of data Longer jobs and queries Analytical processing Often highly partitionable Unknown data relationships Great at looking at all of data MongoDB Connector
 for Hadoop

Slide 81

Slide 81 text

Analytics Landscape Batch  /  Predictive  /  Ad  Hoc   (mins  –  hours) Real-­‐Time  Dashboards  /   Scoring   (<30  ms) Planned  Reporting   (secs  –  mins  ) Experimental Legacy

Slide 82

Slide 82 text

Analytics Landscape Response Data   Supported Maturity Analytical   Capabilities Ease  of  Use Real-­‐Time ● 㾓 㾓 ◕ Batch ● 㾓 ◕ ○ Batch 㾓 㾓 ◔ 㾓 Interactive 㾓 ◔ ◔ 㾓 Interactive ● ○ 㾓 ○ Interactive ◔ ● ● ●

Slide 83

Slide 83 text

Use Cases

Slide 84

Slide 84 text

MongoDB Use Cases Single View Internet of Things Mobile Real-Time Analytics Catalog Personalization Content Management

Slide 85

Slide 85 text

Challenge: Achieve Cross Asset View Batch Batch Batch Issues   •Yesterday’s  data   •Details  lost   •Inflexible  schema   •Slow  performance Batch Impact   •What  happened  today?   •Worse  customer  satisfaction •Missed  opportunities   •Lost  revenue   Batch Batch Reporting Customers Payments Products Data   Mart Data   Mart Data   Mart Datawarehouse

Slide 86

Slide 86 text

.  .  .  .   Solution: Use New Database Customers Payments Products .  .  .  .   Operational   Data  Layer Customers   Service Operational   Reporting Open  Data  API Datawarehouse Strategic   Reporting Benefits   • Real-­‐time   • Complete  details   • Agile   • Higher  customer  retention • New  products   • …

Slide 87

Slide 87 text

Single View of Customer Insurance leader generates coveted 360-degree view of customers in 90 days – “The Wall” Problem Why MongoDB Results • No single view of customer • 145 yrs of policy data, 70+ systems, 15+ apps • 2 years, $25M in failing to aggregate in RDBMS • Poor customer experience • Agility – prototype in 9 days; • Dynamic schema & rich querying – combine disparate data into one data store • Hot tech to attract top talent • Production in 90 days with 70 feeders • Unified customer view available to all channels • Increased call center productivity • Better customer experience, reduced churn, more upsell opps • Dozens more projects on same data platform

Slide 88

Slide 88 text

Product Catalog Serves variety of content and user services on multiple platforms to 7M web and mobile users Problem Why MongoDB Results • MySQL reached scale ceiling – could not cope with performance and scalability demands • Metadata management too challenging with relational model • Hard to integrate external data sources • Unrivaled performance • Simple scalability and high availability • Intuitive mapping • Eliminated 6B+ rows of attributes – instead creates single document per user / piece of content • Supports 115,000+ queries per second • Saved £2M+ over 3 yrs. • “Lead time for new implementations is cut massively” • MongoDB is default choice for all new projects

Slide 89

Slide 89 text

Personnalisation Server Accelerate Time To Market Problem Why MongoDB Results • Expensive Oracle Based Solution • 20 people, 16 months • Performance issues • 3 iterations • Cannot take new requirements • Mature Technology • Dynamic Schema • Fault Tolerance • Performance • 4 Developers • 4 months • Add new features • Faster • Smaller • Easier

Slide 90

Slide 90 text

Reference Data Distribution
 Global Bank Distribute reference data globally in real-time for fast local accessing and querying Problem Why MongoDB Results • Delays up to 36 hours in distributing data by batch • Charged multiple times globally for same data • Incurring regulatory penalties from missing SLAs • Had to manage 20 distributed systems with same data • Dynamic schema: easy to load initially & over time • Auto-replication: data distributed in real-time, read locally • Both cache and database: cache always up-to-date • Simple data modeling & analysis: easy changes and understanding • Will avoid about $40,000,000 in costs and penalties over 5 years • Only charged once for data • Data in sync globally and read locally • Capacity to move to one global shared data service

Slide 91

Slide 91 text

Reference Data Distribution
 Challenge: Ref data difficult to change and distribute Golden   Copy Batch Batch Batch Batch Batch Batch Batch Batch

Slide 92

Slide 92 text

Reference Data Distribution
 Solution: Persistent dynamic cache replicated globally Real-­‐time Real-­‐time Real-­‐time Real-­‐time Real-­‐time Real-­‐time Real-­‐time Real-­‐time

Slide 93

Slide 93 text

Mobile / Open Data API PIM Database • Legacy Application • Product Information NoSQL • REST API • Product Data • Additional Metadata

Slide 94

Slide 94 text

Polyglot Persistence Big  Data/Analysis Document RDBMS • Log  Capture   • Recommendations   • Predictions   • Ad  Campaign • Products   • User  Profiles   • Game  Actions   • Sessions   • Shopping  Cart • Financial  Data   • Reporting

Slide 95

Slide 95 text

And many more… Opening  new  possibles

Slide 96

Slide 96 text

Turning your Network into Insights for resellers

Slide 97

Slide 97 text

Smartsteps

Slide 98

Slide 98 text

Ideas?