Slide 13
Slide 13 text
Decision: how many planets?
13
Periodograms
10 0 10 1 10 2 10 3 10 4
Period (days)
0
0.1
0.2
0.3
0.4
0.5
0.6
Normalized RSS
Generalized Lomb-Scargle periodogram 3 sines with SNR 10
Periodogram
True spectrum
Tallest peak
More precise but
Fast, numerically stable but
Looks for one planet at a time
Much heavier computational
workload, convergence not trivial to
ensure, not giving information on the
period
AAADBnicjVHLSsNAFD3GV31XXboZLIKClFRE3Qg+EFwqWBWslEk66tB0EpKJWNru/RN37sStP+BW8Q/0L7wzjeAD0QlJzj33njNz53pRIBPtui89Tm9f/8Bgbmh4ZHRsfCI/OXWYhGnsi7IfBmF87PFEBFKJspY6EMdRLHjDC8SRV982+aNLEScyVAe6GYnTBj9X8kz6XBNVzW/uVFuKVbS40i0WBVwJnXQ6bJ1VpNIsmm+2K/pCaL7I1AKF3aBtghrrBtV8wS26drGfoJSBArK1F+afUUENIXykaEBAQRMOwJHQc4ISXETEnaJFXExI2rxAB8OkTalKUAUntk7fc4pOMlZRbDwTq/Zpl4DemJQMc6QJqS4mbHZjNp9aZ8P+5t2ynuZsTfp7mVeDWI0LYv/SfVT+V2d60TjDmu1BUk+RZUx3fuaS2lsxJ2efutLkEBFncI3yMWHfKj/umVlNYns3d8tt/tVWGtbEflab4s2ckgZc+j7On+BwqVhaKS7tLxc2trJR5zCDWczTPFexgV3soUzeN3jEE56da+fWuXPuu6VOT6aZxpflPLwD3j2osA==
En planets =
Z
p(y|✓, n)p(✓|n)d✓
Bayesian techniques
Lomb 1976, Ferraz-Mello 1981, Scargle 1982, Baluev 2008,
2009, 2013, 2015, Zechmeister & Küster 2009, Sulis 2016
Gregory 2007, Gregory & Ford 2007,
Tuomi et al. 2011, Diaz et al. 2016
FAP < 0.1 %
Evidence n + 1 planets
Evidence n planets
> 150