Slide 26
Slide 26 text
Code Review at Speed: How can we use data to
help developers do code review faster?
Non-responding
invited reviewers
[Ruangwan et al, 2019]
Workload-aware
Reviewer recommendation
[Al-Zubaidi et al, 2020]
Suboptimal reviewing
[Thongtanunam and Hassan, 2020;
Chouchen et al, 2021]
Line-level defect
prediction
[Wattanakriengkrai et al, 2020]
The Impact of Human Factors on the Participation Decision of Reviewers in Modern Code Review
S. Ruangwan, P. Thongtanunam, A. Ihara, K. Matsumoto at Journal of EMSE 2019
Workload-Aware Reviewer Recommendation using a Multi-objective Search-Based Approach
W. Al-Zubaidi, P. Thongtanunam, H. K. Dam, C. Tantithamthavorn, A. Ghose at PROMISE2020
Review Dynamics and Their Impact on Software Quality
P. Thongtanunam and A. E. Hassan at TSE 2020
M. Chouchen, A. Ouni, R. Kula, D. Wang, P. Thongtanunam, M. Mkaouer, K. Matsumoto at SANER2021
Anti-patterns in Modern Code Review: Symptoms and Prevalence
Predicting Defective Lines Using a Model-Agnostic Technique
S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn, H. Hata, K. Matsumoto at TSE2020
http://patanamon.com
26