@Giuliabianchl
Predicting with Google
Cloud Platform
April 24, 2019 - Giulia Bianchi
Slide 2
Slide 2 text
@Giuliabianchl
@Giuliabianchl
giulbia
Data scientist
> DXD-WiMLDS <
Slide 3
Slide 3 text
@Giuliabianchl
End of 2017
Google AutoML announcement
GCP podcast 117
Slide 4
Slide 4 text
@Giuliabianchl
End of 2018
Google AI Hub announcement
Slide 5
Slide 5 text
@Giuliabianchl
@Giuliabianchl
To access any of them you
need to have access to GCP
anyway...
Slide 6
Slide 6 text
@Giuliabianchl
● Set up a GCP account (gmail ID needed)
● Sign in Google Cloud Console and set up a project ($$$)
● Install Cloud SDK
Google Cloud Platform
Slide 7
Slide 7 text
@Giuliabianchl
Did you say Cloud?
Slide 8
Slide 8 text
@Giuliabianchl
● Cloud → managed services
● From "on-premises" to *aaS
○ IaaS
○ PaaS
○ SaaS
● Access to theoretically unlimited
resources
● Rapidity of provisioning
● Reliability
Cloud what ?! And why should I even care?
Slide 9
Slide 9 text
@Giuliabianchl
GCP AI services - non exhaustive!
SaaS
SaaS
SaaS
SaaS
PaaS
SaaS
Slide 10
Slide 10 text
@Giuliabianchl
@Giuliabianchl
Cloud ML Engine… now known
as AI Platform
@Giuliabianchl
Prediction pipeline Preliminary step
Model
deployed in
GCP
Slide 19
Slide 19 text
@Giuliabianchl
Prediction pipeline
Input new
data
Feature
engineering
Predict!
Model
deployed in
GCP
Prediction
saved in
GCP
Slide 20
Slide 20 text
@Giuliabianchl
Prediction pipeline
Input new
data
Feature
engineering
Predict!
Model
deployed in
GCP
Prediction
saved in
GCP
Done
in
5
sec.
Slide 21
Slide 21 text
@Giuliabianchl
@Giuliabianchl
Some code
Slide 22
Slide 22 text
@Giuliabianchl
Cloud Function - main.py
Slide 23
Slide 23 text
@Giuliabianchl
Cloud Function - requirements.txt
Slide 24
Slide 24 text
@Giuliabianchl
Cloud Function - function deployment
Slide 25
Slide 25 text
@Giuliabianchl
Cloud Function - call to ML engine for prediction
Slide 26
Slide 26 text
@Giuliabianchl
Cloud Function - logs
Slide 27
Slide 27 text
@Giuliabianchl
@Giuliabianchl
Take away
Slide 28
Slide 28 text
@Giuliabianchl
... has a huge potential for data scientists
... is not fully data scientist friendly yet
... it needs more documentation
... evolves super fast
Google Cloud Platform...
Slide 29
Slide 29 text
@Giuliabianchl
Thank you!
Slide 30
Slide 30 text
JUNE, 27th 2019 - PAN PIPER, PARIS
DATAXDAY.FR
> DXD-WiMLDS <