Slide 33
Slide 33 text
© LINE Data Labs
References (2/3)
[Liu, Weiyang, et al. 2017] Liu, Weiyang, et al. "Deep hyperspherical learning." Advances in Neural Information
Processing Systems. 2017.
[Ranjan, Rajeev, et al. 2017] Ranjan, Rajeev, Carlos D. Castillo, and Rama Chellappa. "L2-constrained softmax
loss for discriminative face verification." arXiv preprint arXiv:1703.09507 (2017).
[Liu, Yu, et al. 2017] Liu, Yu, Hongyang Li, and Xiaogang Wang. "Rethinking feature discrimination and
polymerization for large-scale recognition." arXiv preprint arXiv:1710.00870 (2017).
[Liu, Weiyang, et al. 2016] Liu, Weiyang, et al. "Large-Margin Softmax Loss for Convolutional Neural
Networks." ICML. 2016.
[Liu, Weiyang, et al. 2017] Liu, Weiyang, et al. "Sphereface: Deep hypersphere embedding for face
recognition." The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 1. 2017.
[Li, Jian, et al. 2018] Li, Jian, et al. "AF-Softmax for Face Recognition." 2018 International Conference on
Network Infrastructure and Digital Content (IC-NIDC). IEEE, 2018.
[Liang, Xuezhi, et al. 2017] Liang, Xuezhi, et al. "Soft-margin softmax for deep classification." International
Conference on Neural Information Processing. Springer, Cham, 2017.
[Wang, Feng, et al. 2018] Wang, Feng, et al. "Additive margin softmax for face verification." IEEE Signal
Processing Letters 25.7 (2018): 926-930.
33