Slide 1

Slide 1 text

7JSUVBM.BDIJOFT UIFJSDPNNPOQBSUTBOEXIBUNBLFTUIFNTQFDJBM :PBO-JO DT

Slide 2

Slide 2 text

!DT

Slide 3

Slide 3 text

'FXUIJOHTBCPVUNF w0QFO4PVSDF%FWFMPQFSGPSNPSFUIBOZFBST w1FSM$1"/.PEVMFNBJOUBJOFS dNPEVMFT  w'PVOEFEd1)1QSPKFDUTPO(JU)VC w4UBSUFE(PQSPHSBNNJOHTJODF w$POUSJCVUFEQBUDIFTUP(P ;FOE&OHJOF ))7.ʜFUD

Slide 4

Slide 4 text

*XBTB1FSMEFWFMPQFS

Slide 5

Slide 5 text

*MFBSOFE3VCZ JO

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

#VU*EJEO`UHFUBDIBODF UPVTFJU

Slide 8

Slide 8 text

*pOBMMZXSPUFNZpSTU 3VCZQSPHSBNEBZTBHP

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

5IFZ"SF"MM7JSUVBM .BDIJOFT❤

Slide 12

Slide 12 text

w8IBU`T7JSUVBM.BDIJOF  w8IZ%P8F/FFE7JSUVBM.BDIJOF  w7JSUVBM.BDIJOFTJO3FBM8PSME

Slide 13

Slide 13 text

8IBU`T7JSUVBM.BDIJOF

Slide 14

Slide 14 text

In computing, a virtual machine (VM) is an emulation of a computer system. Virtual machines are based on computer architectures and provide functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination. From Wikipedia, the free encyclopedia

Slide 15

Slide 15 text

7JSUVBM.BDIJOF WT 3FBM.BDIJOF

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

$16FYFDVUFTUIFJOTUSVDUJPOT

Slide 18

Slide 18 text

CPU Memory I/O Controller External Storage Address & Data Bus #BTJD%JHJUBM$PNQVUFS"SDIJUFDUVSF

Slide 19

Slide 19 text

Execute Instruction Fetch Instruction Decode Instruction 'FUDI%FDPEF&YFDVUF$ZDMF

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

__text: 100000f08: 55 pushq %rbp 100000f09: 48 89 e5 movq %rsp, %rbp 100000f0c: 48 83 c7 68 addq $104, %rdi 100000f10: 48 83 c6 68 addq $104, %rsi 100000f14: 5d popq %rbp 100000f15: e9 62 36 00 00 jmp 13922 100000f1a: 55 pushq %rbp 100000f1b: 48 89 e5 movq %rsp, %rbp 100000f1e: 48 8d 46 68 leaq 104(%rsi), %rax 100000f22: 48 8d 77 68 leaq 104(%rdi), %rsi 100000f26: 48 89 c7 movq %rax, %rdi 100000f29: 5d popq %rbp 100000f2a: e9 4d 36 00 00 jmp 13901 100000f2f: 55 ushq %rbp 100000f30: 48 89 e5 movq %rsp, %rbp 100000f33: 4c 8b 46 60 movq 96(%rsi), %r8 100000f37: 48 8b 57 60 movq 96(%rdi), %rdx 100000f3b: 48 8b 4a 30 movq 48(%rdx), %rcx 100000f3f: b8 01 00 00 00 movl $1, %eax 100000f44: 49 39 48 30 cmpq %rcx, 48(%r8) 100000f48: 7f 1a jg 26 <__mh_execute_header+0xf64> 100000f4a: 7d 07 jge 7 <__mh_execute_header+0xf53> 100000f4c: b8 ff ff ff ff movl $4294967295, %eax 100000f51: eb 11 jmp 17 <__mh_execute_header+0xf64> 100000f53: 48 8b 4a 38 movq 56(%rdx), %rcx 100000f57: 49 39 48 38 cmpq %rcx, 56(%r8) 100000f5b: 7f 07 jg 7 <__mh_execute_header+0xf64> 100000f5d: b8 ff ff ff ff movl $4294967295, %eax 100000f62: 7d 02 jge 2 <__mh_execute_header+0xf66> 100000f64: 5d popq %rbp 100000f65: c3 retq 100000f66: 48 83 c7 68 addq $104, %rdi 100000f6a: 48 83 c6 68 addq $104, %rsi 100000f6e: 5d popq %rbp 100000f6f: e9 08 36 00 00 jmp 13832 BTTFNCMZDPEF NBDIJOFDPEF

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

5ZQFTPG7JSUVBM.BDIJOF

Slide 24

Slide 24 text

4ZTUFN7JSUVBM.BDIJOF

Slide 25

Slide 25 text

4ZTUFN7JSUVBM.BDIJOFT w'VMM7JSUVBMJ[BUJPO7.T w)BSEXBSF7JSUVBMJ[BUJPOŠ$16 .FNPSZʜFUD w7JSUVBMJ[FE%FWJDFTŠ%JTL /FUXPSL 64#  ,FZCPBSEʜFUD w1IZTJDBM.BDIJOF4JNVMBUJPO w5IFpSTUTZTUFNUPBMMPXGVMMWJSUVBMJ[BUJPOŠ *#.`T$1$.4

Slide 26

Slide 26 text

1SPDFTT7JSUVBM.BDIJOF

Slide 27

Slide 27 text

1SPDFTT7JSUVBM.BDIJOFT w%FTJHOFEUPSVOZPVSQSPHSBNTJOBQMBUGPSN JOEFQFOEFOUFOWJSPONFOU w"QQMJDBUJPO7JSUVBMJ[BUJPO w+7. /&5$-3 1BSSPU7.ʜFUD

Slide 28

Slide 28 text

0DPEF.BSUJO3JDIBSET wTŠ.BSUJO 3JDIBSETJOWFOUFE0 DPEFFNJUUFECZ#$1- w0DPEF 0CKFDUDPEF  w0DPEFWJSUVBMNBDIJOF w#$1- #BTJD$PNCJOFE 1SPHSBNNJOH-BOHVBHF Martin Richards (born 21 July 1940) is a British computer scientist known for his development of the BCPL programming

Slide 29

Slide 29 text

#$1-BOE# w#QSPHSBNNJOHMBOHVBHF XBTEFSJWFEGSPN#$1-BOE EFWFMPQFEBU#FMM-BCT wCZ,FO5IPNQTPOBOE %FOOJT3JUDIJF

Slide 30

Slide 30 text

1DPEF/JLMBVT8JSUI wTŠQDPEFGPS&VMFS QSPHSBNNJOHMBOHVBHF wŠ1BTDBM1DPNQJMFS HFOFSBUFT1DPEF wTŠ#04XBTUIFpSTU DSPTTQMBUGPSNPQFSBUJOHTZTUFN EFTJHOFEUPSVOQDPEF wTŠUSBOTMBUJPOJOUPQDPEF CFDBNFBQPQVMBSTUSBUFHZ  TVDIBT.47# 1ZUIPOʜFUD

Slide 31

Slide 31 text

4NBMM5BMLBOE"MBO,BZ wTŠUIFpSTUWFSTJPO QVCMJDMZBWBJMBCMF 4NBMM5BML w%FVUTDI4DIJ⒎NBOO JNQMFNFOUBUJPOQVTIFEKVTU JOUJNF +*5 DPNQJMBUJPO GPSXBSE

Slide 32

Slide 32 text

+7. w*OUSPEVDFEJO w%FWFMPQFECZ4VO .JDSPTZTUFNT w+BWBCZUFDPEF

Slide 33

Slide 33 text

8IFSFJT1FSM 3VCZ  BOE1)1

Slide 34

Slide 34 text

#FDBVTF5IFZXFSF *OUFSQSFUFST

Slide 35

Slide 35 text

*OUFSQSFUFS WT 7JSUVBM.BDIJOF

Slide 36

Slide 36 text

%J⒎FSFODFTCFUXFFO *OUFSQSFUFSBOE7JSUVBM.BDIJOF w*OUFSQSFUFSTEPO`UHFOFSBUFVTFCZUFDPEF w*OUFSQSFUFSTUSBWFSTFUIF"45OPEFUPFYFDVUFUIF MPHJDT w3FMBUJWFMZFBTJFSUPCFJNQMFNFOUFEUIBO7JSUVBM .BDIJOF

Slide 37

Slide 37 text

*OUFSQSFUFST 8PSLPO"45EJSFDUMZ

Slide 38

Slide 38 text

1FSM wŠ1FSMXBTEFWFMPQFE BTUIFOFX"8, 4&%CZ -BSSZ8BMM wŠ1FSMXBTSFMFBTFE XJUIBDPNQMFUFMZSFXSJUUFO WJSUVBMNBDIJOF JUIBTB PQUSFFEFTJHO

Slide 39

Slide 39 text

1ZUIPO wTŠEFTJHOFEBOE EFWFMPQFECZ(VJEPWBO 3PTTVN wTŠ$1ZUIPOXBT SFMFBTFEXJUIWJSUVBM NBDIJOFBOECZUFDPEF TVQQPSU

Slide 40

Slide 40 text

3VCZ wNJETŠEFTJHOFEBOE EFWFMPQFECZ:VLJIJSP.BU[ w.3*Š.BU[`T3VCZ *OUFSQSFUFSCFGPSF3VCZ wTŠ:"37 :FU"OPUIFS 3VCZ7. XBTEFWFMPQFECZ ,PJDIJ4BTBEB

Slide 41

Slide 41 text

1)1 w0SJHJOBMMZDSFBUFECZ 3BTNVT-FSEPSGJO  TUBSUFEBTBO*OUFSQSFUFSGPS $(* w;FFWBOE"OEJJOUSPEVDFE ;FOE&OHJOF**BU wŠ;FOE&OHJOF***GPS 1)1

Slide 42

Slide 42 text

1BSSPU7. w0SJHJOBMMZBJNFEUPTVQQPSU1FSM BOEPUIFSTFWFSBM QSPHSBNNJOHMBOHVBHFTMJLF1)1 1ZUIPO 3VCZ +BWB  -VBʜFUD w3BLVEP1FSMVTFE1BSSPU7.BUUIFCFHJOOJOH w4UBSUFEBSPVOEdT w1BSSPU7.XBTSFMFBTFEJO

Slide 43

Slide 43 text

)PX%PFT7JSUVBM .BDIJOF8PSL

Slide 44

Slide 44 text

TPVSDFGSPNWEFWWJBDD

Slide 45

Slide 45 text

)PX5P#VJME"O"45

Slide 46

Slide 46 text

8FOFFEB1BSTFS

Slide 47

Slide 47 text

x > 100 ? 'foo' : 'bar' X > 0 ? ‘foo’ : ‘bar’ Lexer

Slide 48

Slide 48 text

Parser X > 0 ? ‘foo’ : ‘bar’

Slide 49

Slide 49 text

"OE(SBNNBS3VMFT

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

expression => expression + term | expression - term | term term => term * factor | term / factor | factor
 factor => ‘(‘ expression ‘)’
 | NUMBER

Slide 52

Slide 52 text

5PQ%PXO1BSTFS
 PS
 #PUUPNVQ1BSTFS

Slide 53

Slide 53 text

5PQEPXO1BSTFS

Slide 54

Slide 54 text

5PQ%PXO1BSTFS TUBSUGSPNIFSF

Slide 55

Slide 55 text

5PQ%PXO1BSTFS 'BNJMZ5SFF w3FDVSTJWF%FTDFOU w#BDLUSBDLJOH w/PO#BDLUSBDLJOH w1SFEJDUJWF1BSTFS w--1BSTFS

Slide 56

Slide 56 text

#BDLUSBDLJOH1BSTFS &9: 9BCcB :C lBCzBTJOUIFJOQVU The backtracking parsers, like classical parsers and functional parsers, use a recursive descent algorithm. But: If a stream pattern component does not match the current position of the input stream, the control is given to the next case of the stream pattern component before it. If it is the first stream pattern component, the rule (the stream pattern is left and the next rule is tested. For example, the following grammar: E -> X Y X -> a b | a Y -> b works, with the backtracking algorithm, for the input "a b". Parsing with the non-terminal "E", the non-terminal "X" first accepts the input "a b" with its first rule. Then when "Y" is called, the parsing fails since nothing

Slide 57

Slide 57 text

#BDLUSBDLJOH &9: 9BCcB :C lBCzBTJOUIFJOQVU NBUDI

Slide 58

Slide 58 text

#BDLUSBDLJOH &9: 9BCcB :C lBCzBTJOUIFJOQVU bC`OPUGPVOE GBMMCBDLUPUIFTFDPOEDBTFGSPNUIFQBSFOUSVMF

Slide 59

Slide 59 text

#BDLUSBDLJOH &9: 9BCcB :C lBCzBTJOUIFJOQVU NBUDI

Slide 60

Slide 60 text

#BDLUSBDLJOH &9: 9BCcB :C lBCzBTJOUIFJOQVU NBUDI

Slide 61

Slide 61 text

--1BSTFS w--NFBOT -FGUUPSJHIU -FGUNPTUEFSJWBUJPO  w-- L NFBOTLTZNCPMMPPLBIFBEBUFBDITUFQ w--  NFBOTTZNCPMMPPLBIFBEBUFBDITUFQ

Slide 62

Slide 62 text

--1BSTFS HSBNNBS 4ˠ& &ˠ & &  &ˠ 4㱺& Generally, there are multiple possibilities when selecting a rule to expand given (leftmost) non-terminal. In the previous example of the leftmost derivation, in step 2 the parser must choose whether to apply rule 2 or rule 3: 
 To be efficient, the parser must be able to make this choice deterministically when possible, without backtracking. For some grammars, it can do this by peeking on the unread input (without reading). In our example, if the parser 㱺 & & 㱺 & &  & 㱺  &  & 㱺    & 㱺     JOQVU    

Slide 63

Slide 63 text

#PUUPNVQ1BSTFS

Slide 64

Slide 64 text

A = B + C * 2 BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 65

Slide 65 text

A = B + C * 2 WBS BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 66

Slide 66 text

A = B + C * 2 WBS WBS UFSN BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 67

Slide 67 text

A = B + C * 2 WBS WBS UFSN WBS GBDUPS UFSN BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 68

Slide 68 text

A = B + C * 2 WBS WBS UFSN WBS GBDUPS DPOTU GBDUPS UFSN BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 69

Slide 69 text

A = B + C * 2 WBS WBS UFSN WBS GBDUPS FYQS UFSN DPOTU GBDUPS UFSN BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 70

Slide 70 text

A = B + C * 2 WBS WBS UFSN WBS GBDUPS FYQS UFSN DPOTU GBDUPS UFSN FYQS BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 71

Slide 71 text

A = B + C * 2 WBS BTTJHO WBS UFSN WBS GBDUPS FYQS UFSN DPOTU GBDUPS UFSN FYQS BTTJHOˠWBSFYQS FYQSˠUFSN FYQS FYQSˠUFSN UFSNˠUFSN∗GBDUPS UFSNˠGBDUPS GBDUPSˠ FYQS GBDUPSˠDPOTU GBDUPSˠWBS DPOTUˠJOUFHFS

Slide 72

Slide 72 text

-3  QBSTFUBCMF

Slide 73

Slide 73 text

#PUUPNVQQBSTJOHWT5PQEPXOQBSTJOH 1SPTBOE$POT

Slide 74

Slide 74 text

--WT-3 w--QBSTFSTJTFBTJFSUPVOEFSTUBOEBOEJNQMFNFOU:PVDBOIBOE XSJUFSFDVSTJWFEFTDFOUQBSTFSTXJUIDPEFUIBUDMPTFMZNBUDIFTUIF HSBNNBS w-3QBSTFSTBSFTUSJDUMZNPSFQPXFSGVMUIBO--QBSTFST BOEJO BEEJUJPO -"-3QBSTFSTDBOSVOJO0 O MJLF--QBSTFST4PZPV XPOUpOEBOZGVODUJPOBMBEWBOUBHFTPG--PWFS-3 w5IVT UIFPOMZBEWBOUBHFPG--JTUIBU-3TUBUFNBDIJOFTBSFRVJUF BCJUNPSFDPNQMFYBOEEJ⒏DVMUUPVOEFSTUBOE BOE-3QBSTFST UIFNTFMWFTBSFOPUFTQFDJBMMZJOUVJUJWF0OUIFPUIFSIBOE -- QBSTFSDPEFXIJDIJTBVUPNBUJDBMMZHFOFSBUFEDBOCFWFSZFBTZUP VOEFSTUBOEBOEEFCVH

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

1BSTFS(FOFSBUPS

Slide 77

Slide 77 text

expression : expression ‘+’ term { $$ = $1 + $3 } | expression ‘-‘ term { $$ = $1 - $3 } | term { $$ = $1 } ; term : term ‘*’ factor { $$ = $1 * $3 } | term ‘/‘ factor { $$ = $1 * $4 } | factor { $$ = $1 }
 ;
 factor : ‘(‘ expression ‘)’ { $$ = $2 } | NUMBER { $$ = $1 }
 | ID { $$ = valueof($1); } parser.y $POUFYU'SFF(SBNNBSEFpOFEJO#JTPO4ZOUBY

Slide 78

Slide 78 text

1BSTFS(FOFSBUPS w#BTI (P ;FOE&OHJOF $3VCZVTFT#JTPO w+ZUIPO (SPPWZVTFT"/5-3

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

"MNPTUIBMGPGUIFCPPLJTUBMLJOH BCPVUl1BSTFSTzBOEl1BSTFS (FOFSBUPSTz

Slide 81

Slide 81 text

:PV$BO+VTU 4LJQ5IFN

Slide 82

Slide 82 text

5IFUFDIOJRVFTBSFNBUVSF FOPVHIJOUIFTFEFDBEFT

Slide 83

Slide 83 text

*OUVJUJWFBOE TUSBJHIUGPSXBSE

Slide 84

Slide 84 text

$PEF(FOFSBUJPO

Slide 85

Slide 85 text

:PVQSPCBCMZIFBSE *3

Slide 86

Slide 86 text

*OUFSNFEJBUF 3FQSFTFOUBUJPO

Slide 87

Slide 87 text

)PX$PNQJMFS8PSLT Parser Intermediate Code Generator Optimizer Target Code Generator IR AST x86 ARM MIPS PowerPC IR /BUJWF$PEF

Slide 88

Slide 88 text

--7."SDIJUFDUVSF

Slide 89

Slide 89 text

--7.*3 define i32 @square_unsigned(i32 %a) { %1 = mul i32 %a, %a ret i32 %1 }

Slide 90

Slide 90 text

7JSUVBM.BDIJOFTEPO`U (FOFSBUF/BUJWF$PEF

Slide 91

Slide 91 text

*U&YFDVUFT *OUFSNFEJBUF$PEF %JSFDUMZ

Slide 92

Slide 92 text

*OUFSNFEJBUF$PEF  #ZUF$PEF

Slide 93

Slide 93 text

Parser Byte-Code Generator Byte-code Execution Byte Code AST

Slide 94

Slide 94 text

Parser Byte-Code Generator Optimizer Byte-code Execution Byte Code Byte Code AST XJUICZUFDPEFPQUJNJ[FS

Slide 95

Slide 95 text

No content

Slide 96

Slide 96 text

No content

Slide 97

Slide 97 text

4P 8IBU`T#ZUFDPEF

Slide 98

Slide 98 text

#ZUFDPEFJTQSPHSBNDPEFUIBUIBTCFFODPNQJMFEGSPN TPVSDFDPEFJOUPMPXMFWFMDPEFEFTJHOFEGPSBTPGUXBSF JOUFSQSFUFS*UNBZCFFYFDVUFECZBWJSUVBMNBDIJOF TVDIBT B+7. PSGVSUIFSDPNQJMFEJOUPNBDIJOFDPEF XIJDIJT SFDPHOJ[FECZUIFQSPDFTTPS

Slide 99

Slide 99 text

/BUJWF$PEF movl $0x000F, %eax YBTNJOTUSVDUJPOJO("4 (/6BTTFNCMFS

Slide 100

Slide 100 text

+BWB#ZUFDPEF iconst_2 istore_1 iload_1 sipush 1000 if_icmpge 44 iconst_2 istore_2 iload_2 iload_1 if_icmpge 31 iload_1 iload_2 irem ifne 25 goto 38 iinc 2, 1

Slide 101

Slide 101 text

;FOE&OHJOF#ZUFDPEF

Slide 102

Slide 102 text

$3VCZ#ZUFDPEF

Slide 103

Slide 103 text

%JEZPVpOEUIF EJ⒎FSFODFT

Slide 104

Slide 104 text

3FHJTUFSCBTFECZUFDPEF WT 4UBDLCBTFECZUFDPEF

Slide 105

Slide 105 text

4UBDLCBTFE 7JSUVBM.BDIJOF

Slide 106

Slide 106 text

4UBDLCBTFE#ZUFDPEF putobject 2 Operator Operand 3VCZ:"37Š*4FR *OTUSVDUJPO4FRVFODF

Slide 107

Slide 107 text

4UBDLCBTFE#ZUFDPEF Operator Operand Operator Operand Operator Operand Operator Operand Operator Operand Operator Operand 1$ QSPHSBNDPVOUFS

Slide 108

Slide 108 text

0QFSBOE4UBDL 101 101 "%%  SFTVMU 164)SFTVMU 4UBDLCBTFEIBTBOFYUSBTUBDLGPSFYFDVUJOHPQFSBUPST

Slide 109

Slide 109 text

3VCZ:"37 41 1$ putself putobject 2 putobject 2 opt_plus opt_send_simple

Slide 110

Slide 110 text

3VCZ:"37 self 41 1$ putself putobject 2 putobject 2 opt_plus opt_send_simple

Slide 111

Slide 111 text

3VCZ:"37 2 self 41 1$ putself putobject 2 putobject 2 opt_plus opt_send_simple

Slide 112

Slide 112 text

3VCZ:"37 2 2 self 41 1$ putself putobject 2 putobject 2 opt_plus opt_send_simple

Slide 113

Slide 113 text

3VCZ:"37 4 self 41 1$ putself putobject 2 putobject 2 opt_plus opt_send_simple

Slide 114

Slide 114 text

3VCZ:"37 putself putobject 2 putobject 2 opt_plus opt_send_simple

Slide 115

Slide 115 text

3FHJTUFSCBTFE 7JSUVBM.BDIJOF

Slide 116

Slide 116 text

3FHJTUFSCBTFE#ZUFDPEF ADD R1, R2, R3 Operator Operand Operand Result 5ISFF"EESFTT$PEF

Slide 117

Slide 117 text

3FHJTUFSCBTFE#ZUFDPEF 1$ QSPHSBNDPVOUFS Operator Operand Operand Result Operator Operand Operand Result Operator Operand Operand Result Operator Operand Operand Result Operator Operand Operand Result Operator Operand Operand Result Operator Operand Operand Result

Slide 118

Slide 118 text

;FOE&OHJOF R0: R1: TMP_VAR ~4: 1$ ASSIGN !0, 1 ASSIGN !1, 2 ADD ~4 !0, !1 ECHO ~4 RETURN

Slide 119

Slide 119 text

;FOE&OHJOF R0: 1 R1: TMP_VAR ~4: 1$ ASSIGN !0, 1 ASSIGN !1, 2 ADD ~4 !0, !1 ECHO ~4 RETURN

Slide 120

Slide 120 text

;FOE&OHJOF R0: 1 R1: 2 TMP_VAR ~4: 1$ ASSIGN !0, 1 ASSIGN !1, 2 ADD ~4 !0, !1 ECHO ~4 RETURN

Slide 121

Slide 121 text

;FOE&OHJOF R0: 1 R1: 2 TMP_VAR ~4: 3 1$ ASSIGN !0, 1 ASSIGN !1, 2 ADD ~4 !0, !1 ECHO ~4 RETURN

Slide 122

Slide 122 text

;FOE&OHJOF R0: 1 R1: 2 TMP_VAR ~4: 3 ASSIGN !0, 1 ASSIGN !1, 2 ADD ~4 !0, !1 ECHO ~4 RETURN 1$

Slide 123

Slide 123 text

4UBDLCBTFE7. WT3FHJTUFSCBTFE7. w4UBDLCBTFE7. wUIFCZUFDPEFTUSVDUVSFJTDPNQBDU wSFMBUJWFMZTNBMM wCVUJUOFFETNPSFTUFQTUPCFFYFDVUFE w3FHJTUFSCBTFE7. wUIFCZUFDPEFTUSVDUVSFJTTJNJMBSUPUIFOBUJWFNBDIJOFJOTUSVDUJPO wGFXFSJOTUSVDUJPOTBSFOFFEFEJOTUSVDUJPOTDBOCFFYFDVUFEGBTUFSJOUIFEJTQBUDIMPPQ wSFHJTUFSTBSFSFMBUJWFMZFBTJFSUPCFNBQQFEUPUIFOBUJWFNBDIJOFSFHJTUFS BOEXIJDI BMTPBMMPXTTPNFDPNQJMFSPQUJNJ[BUJPO wSFTVMUTJOUIFSFHJTUFSTDBOCFSFVTFEXIJMFOFFEFE

Slide 124

Slide 124 text

%BMWJL7.WT+7. w+BWB7.JTTUBDLCBTFE %BMWJLJTSFHJTUFSCBTFE w/PUVTJOHUIFTUBDL 3". WJB--DBDIFT NBLFT %BMWJLTPNFXIBUGBTUFS w+BWBCZUFDPEFJTBDUVBMMZNPSFDPNQBDUUIBO%BMWJL w+BWBJOTUSVDUJPOTUBLFCZUFT %BMWJLUBLF CZUFT JOCZUFNVMUJQMFT  w%BMWJLCZUFDPEFJTNPSFTVJUFEUP"3.BSDIJUFDUVSFT

Slide 125

Slide 125 text

3FHJTUFSCBTFEPS4UBDL CBTFE XIJDIPOFJTCFUUFS

Slide 126

Slide 126 text

IUUQTXXXVTFOJYPSHMFHBDZFWFOUTWFFGVMM@QBQFSTQZVOIFQEG

Slide 127

Slide 127 text

)PX5P(FOFSBUF #ZUFDPEF

Slide 128

Slide 128 text

$PNQJMFS$PEF(FOFSBUJPO w*OTUSVDUJPO4FMFDUJPO w*OTUSVDUJPO4DIFEVMJOH w3FHJTUFS"MMPDBUJPO

Slide 129

Slide 129 text

$3VCZ#ZUFDPEF

Slide 130

Slide 130 text

def iterator yield 'yield, ' yield 'blocks,' yield 'Ruby' end iterator {|yeilded| print "use #{yeilded}"} iterator.c JTFRNFUIPE

Slide 131

Slide 131 text

def iterator yield 'yield, ' yield 'blocks,' yield 'Ruby' end iterator {|yeilded| print "use #{yeilded}"} iterator.c JTFR UPQ

Slide 132

Slide 132 text

0002 trace 1 0004 putself 0005 putstring "hello, world" 0007 send :puts, 1, nil, 8, 0013 trace 16 rb_block_t iseq

Slide 133

Slide 133 text

JTFR iseq_trace_data iseq_link_element *prev *next custom fields iseq_insn_data iseq_link_element *prev *next custom fields iseq_insn_data iseq_link_element *prev *next custom fields iseq_link_anchor anchor *last

Slide 134

Slide 134 text

$3VCZ iseq_compile_each0(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const NODE *node, int popped) switch (type) { case NODE_BLOCK:{ while (node && nd_type(node) == NODE_BLOCK) { CHECK(COMPILE_(ret, "BLOCK body", node->nd_head, (node->nd_next ? 1 : popped))); node = node->nd_next; } if (node) { CHECK(COMPILE_(ret, "BLOCK next", node->nd_next, popped)); } break; } case NODE_IF: case NODE_UNLESS: CHECK(compile_if(iseq, ret, node, popped, type)); break; case NODE_CASE: CHECK(compile_case(iseq, ret, node, popped)); break; case NODE_CASE2: CHECK(compile_case2(iseq, ret, node, popped)); break;

Slide 135

Slide 135 text

$3VCZJTFR /* T_IMEMO/iseq */ /* typedef rb_iseq_t is in method.h */ struct rb_iseq_struct { VALUE flags; /* 1 */ VALUE wrapper; /* 2 */ struct rb_iseq_constant_body *body; /* 3 */ union { /* 4, 5 words */ struct iseq_compile_data *compile_data; /* used at compile time */ struct { VALUE obj; int index; } loader; struct { struct rb_hook_list_struct *local_hooks; rb_event_flag_t global_trace_events; } exec; } aux; };

Slide 136

Slide 136 text

$3VCZ#ZUFDPEF wJTFR JOTUSVDUJPOTFRVFODF JTPSHBOJ[FECZTDPQFT /0%&@4$01& FH UPQ NFUIPE DMBTT CMPDL wJTFRJTBEPVCMFMJOLFEMJTU w5IFSC@JTFR@DPNQJMF@OPEFGVODUJPOJUFSBUFTUIF"45 OPEFTBOEHFOFSBUFTUIFSFMBUFESC@JTFR@UTUSVDUVSF wJTFRBSF3VCZPCKFDUT UIFZDBOCFHBSCBHFDPMMFDUFE

Slide 137

Slide 137 text

;FOE&OHJOF#ZUFDPEF

Slide 138

Slide 138 text

[FOE@PQ@BSSBZ zend_op_array zend_op *opcodes zval *literals zend_string **vars zend_op const void* handler zend_uchar opcode znode_op op2 znode_op op1 znode_op result zval 223 zval abc zend_op const void* handler zend_uchar opcode znode_op op2 znode_op op1 znode_op result zend_op const void* handler zend_uchar opcode znode_op op2 znode_op op1 znode_op result zval abc zval abc

Slide 139

Slide 139 text

[FOE@DPNQJMF@WBS zend_op *zend_compile_var(znode *result, zend_ast *ast, uint32_t type, int by_ref) /* {{{ */ { CG(zend_lineno) = zend_ast_get_lineno(ast); switch (ast->kind) { case ZEND_AST_VAR: return zend_compile_simple_var(result, ast, type, 0); case ZEND_AST_DIM: return zend_compile_dim(result, ast, type); case ZEND_AST_PROP: return zend_compile_prop(result, ast, type, by_ref); case ZEND_AST_STATIC_PROP: return zend_compile_static_prop(result, ast, type, by_ref, 0); case ZEND_AST_CALL: zend_compile_call(result, ast, type); return NULL; case ZEND_AST_METHOD_CALL: zend_compile_method_call(result, ast, type); return NULL; case ZEND_AST_STATIC_CALL: zend_compile_static_call(result, ast, type); return NULL; case ZEND_AST_ZNODE: *result = *zend_ast_get_znode(ast);

Slide 140

Slide 140 text

[FOE@PQ struct _zend_op { const void *handler; znode_op op1; znode_op op2; znode_op result; uint32_t extended_value; uint32_t lineno; zend_uchar opcode; zend_uchar op1_type; zend_uchar op2_type; zend_uchar result_type; };

Slide 141

Slide 141 text

;FOE&OHJOF#ZUFDPEF w;FOE&OHJOFCZUFDPEFJTBDPNQBDU BMJHOFEPQTUSVDU BSSBZ DBMMFE[FOE@PQ@BSSBZ w;FOE&OHJOFVTFTQPJOUFSUPJUFSBUFUIFJOTUSVDUJPOT w5IF[FOE@PQ@BSSBZTUSVDUBSFBMMPDBUFEEJSFDUMZGSPN UIFNFNPSZNBOBHFSUIFZBSF/05HBSCBHF DPMMFDUFE

Slide 142

Slide 142 text

%VDL5ZQJOH7BMVF BOE.FNPSZ.BOBHFNFOU

Slide 143

Slide 143 text

$3VCZVTFT37"-6&

Slide 144

Slide 144 text

typedef struct RVALUE { union { struct { VALUE flags; /* always 0 for freed obj */ struct RVALUE *next; } free; struct RBasic basic; struct RObject object; struct RClass klass; struct RFloat flonum; struct RString string; struct RArray array; struct RRegexp regexp; struct RHash hash; struct RData data; struct RTypedData typeddata; struct RStruct rstruct; struct RBignum bignum; struct RFile file; struct RMatch match; struct RRational rational; struct RComplex complex; union { ... } imemo; struct { struct RBasic basic; VALUE v1; VALUE v2; VALUE v3; } values; } as; } RVALUE; RVALUE.as.basic RVALUE.as.object RVALUE.as.klass

Slide 145

Slide 145 text

VALUE struct RString 7"-6&JTUIFQPJOUFSPG3VCZPCKFDUT

Slide 146

Slide 146 text

typedef unsigned long VALUE 8):

Slide 147

Slide 147 text

typedef unsigned long VALUE 32-bit VALUE space MSB ------------------------ LSB false 00000000000000000000000000000000 true 00000000000000000000000000000010 nil 00000000000000000000000000000100 undef 00000000000000000000000000000110 symbol ssssssssssssssssssssssss00001110 object oooooooooooooooooooooooooooooo00 fixnum fffffffffffffffffffffffffffffff1

Slide 148

Slide 148 text

static inline int rb_type(VALUE obj) { if (RB_IMMEDIATE_P(obj)) { if (RB_FIXNUM_P(obj)) return RUBY_T_FIXNUM; if (RB_FLONUM_P(obj)) return RUBY_T_FLOAT; if (obj == RUBY_Qtrue) return RUBY_T_TRUE; if (RB_STATIC_SYM_P(obj)) return RUBY_T_SYMBOL; if (obj == RUBY_Qundef) return RUBY_T_UNDEF; } else if (!RB_TEST(obj)) { if (obj == RUBY_Qnil) return RUBY_T_NIL; if (obj == RUBY_Qfalse) return RUBY_T_FALSE; } return RB_BUILTIN_TYPE(obj); } 5:1& PCK NBDSPSFUVSOTUIFUZQFPGB7"-6&

Slide 149

Slide 149 text

struct RObject { struct RBasic basic; union { struct { uint32_t numiv; VALUE *ivptr; void *iv_index_tbl; } heap; VALUE ary[ROBJECT_EMBED_LEN_MAX]; } as; }; TIBSFTUIFTBNFDPNNPOTUSVDUGSPNUIFNFNPSZ

Slide 150

Slide 150 text

struct RString { struct RBasic basic; union { struct { long len; char *ptr; union { long capa; VALUE shared; } aux; } heap; char ary[RSTRING_EMBED_LEN_MAX + 1]; } as; };

Slide 151

Slide 151 text

struct RArray { struct RBasic basic; union { struct { long len; union { long capa; VALUE shared; } aux; const VALUE *ptr; } heap; const VALUE ary[RARRAY_EMBED_LEN_MAX]; } as; };

Slide 152

Slide 152 text

System Memory Malloc Heap Ruby Object Heap Allocated via jemalloc ObjectSpace

Slide 153

Slide 153 text

$3VCZ w$3VCZVTFT7"-6&CJUNBTLUPQSFTFOUUIFUZQF wJTFR PCKFDUʜBMPUPGUIJOHTBSFVTJOH7"-6& w7"-6&TBSFBMMHBSCBHFDPMMFDUFE

Slide 154

Slide 154 text

;FOE&OHJOFVTFT;7"-

Slide 155

Slide 155 text

typedef union _zend_value { zend_long lval; /* long value */ double dval; /* double value */ zend_refcounted *counted; zend_string *str; zend_array *arr; zend_object *obj; zend_resource *res; zend_reference *ref; zend_ast_ref *ast; zval *zv; void *ptr; zend_class_entry *ce; zend_function *func; struct { uint32_t w1; uint32_t w2; } ww; } zend_value;

Slide 156

Slide 156 text

struct _zend_string { zend_refcounted_h gc; zend_ulong h; /* hash value */ size_t len; char val[1]; }; TIBSFTUIFTBNFDPNNPOTUSVDUGSPNUIFNFNPSZ

Slide 157

Slide 157 text

struct _zend_array { zend_refcounted_h gc; union { struct { ZEND_ENDIAN_LOHI_4( zend_uchar flags, zend_uchar _unused, zend_uchar nIteratorsCount, zend_uchar _unused2) } v; uint32_t flags; } u; uint32_t nTableMask; Bucket *arData; uint32_t nNumUsed; uint32_t nNumOfElements; uint32_t nTableSize; uint32_t nInternalPointer; zend_long nNextFreeElement; dtor_func_t pDestructor; };

Slide 158

Slide 158 text

static zend_always_inline zend_uchar zval_get_type(const zval* pz) { return pz->u1.v.type; } UZQFWBMVFJTTUPSFEJOUIFTUSVDUpFME

Slide 159

Slide 159 text

$PMMFDUBCMFBOE3FGDPVOUFE refcounted collectable copyable simple types string x x array x x x object x x resource x reference x

Slide 160

Slide 160 text

;7"- w;FOE&OHJOFVTFTVDIBSpFMEUPQSFTFOUUIFUZQFPG UIFWBMVF w/PUBMM[WBMTBSFHBSCBHFDPMMFDUFEFH PQDPEFTBSF OPUHBSCBHFDPMMFDUFE w5IFTJ[FPG;7"-JTTNBMMFOPVHIUPCFDBDIFEJOUIF $16%$BDIF CZUFTQFS[WBM

Slide 161

Slide 161 text

#ZUFDPEF&YFDVUJPO

Slide 162

Slide 162 text

#ZUFDPEF%JTQBUDI-PPQ zend_op_array zend_op {opcode, op1, op2, result} zend_user_opcode_handlers ZEND_NOP_SPEC ZEND_ADD_SPEC_CONST_CONST ZEND_SUB_SPEC_CONST_CONST ZEND_MUL_SPEC_CONST_CONST ZEND_DIV_SPEC_CONST_CONST … … zend_op {opcode, op1, op2, result} zend_op {opcode, op1, op2, result} zend_op {opcode, op1, op2, result} zend_op {opcode, op1, op2, result} Executor Loop lookup iterate

Slide 163

Slide 163 text

YTUBDLGSBNF

Slide 164

Slide 164 text

x86 Memory Model Stack Heap Uninitialized data Initialized data Text High address Low address command-line arguments function calls dynamic memory allocation (dynamic variable) declared variables (uninitialized) initialized variables (predefined data) program code

Slide 165

Slide 165 text

No content

Slide 166

Slide 166 text

[FOEFOHJOF DBMMGSBNF

Slide 167

Slide 167 text

struct _zend_execute_data { const zend_op *opline; /* executed opline */ zend_execute_data *call; /* current call */ zval *return_value; zend_function *func; /* executed function */ zval This; /* this + call_info + num_args */ zend_execute_data *prev_execute_data; zend_array *symbol_table; };

Slide 168

Slide 168 text

zend_execute_data zval zval … function args zval num args zval zval … compiled vars zval zval … extra args (optional) execution information zend_function this symbol table return value … 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 72 bytes Grow lower address 0x10000000 zend_execute_data vars … GVODUJPONFUIPEDBMMTBSFTJNVMBUFECZUIFEFpOFE$TUSVDU

Slide 169

Slide 169 text

stack call frame zend_arena page zend_vm_stack top end prev zend_vm_stack top end prev zend_execute_data symbol table current call executed zend function return value this runtime cache prev_execute_data vars (zval array) 0 1

Slide 170

Slide 170 text

[FOEFOHJOFDBMMGSBNF w5IFTUSVDUJT[FOE@FYFDVUF@EBUB w5IFDBMMGSBNFT [FOE@FYFDVUF@EBUB BSFBMMPDBUFE DPOUJOVPVTMZGSPNUIF7.TUBDL$BMMBSHVNFOUTBSF BQQFOEFEBGUFSFBDIDBMMGSBNF

Slide 171

Slide 171 text

SVCZDPOUSPMGSBNF

Slide 172

Slide 172 text

typedef struct rb_control_frame_struct { const VALUE *pc; /* program counter */ VALUE *sp; /* stack pointer */ const rb_iseq_t *iseq; /* instruction sequence */ VALUE self; /* self */ const VALUE *ep; /* environment pointer */ const void *block_code; /* iseq or ifunc */ const VALUE *bp; /* cfp[6] */ } rb_control_frame_t;

Slide 173

Slide 173 text

SC@DPOUSPM@GSBNF w5IFSFBSFUXPLJOETPGTUBDLJOUIF$3VCZ7.DBMM TUBDLBOEPQFSBOETUBDL JOUFSOBMTUBDL  w4JODF3VCZJTTUBDLCBTFE7. FBDIDPOUSPMGSBNFIBT POFPQFSBOETUBDL JOUFSOBMTUBDL  w5IFFOWJSPONFOUQPJOUFSJTVTFEUPSFGFSFODJOHPUIFS DPOUSPMGSBNF FH$MPTVSFDBOSFGFSFODFUIFMPDBM WBSJBCMFTGSPNUIFQBSFOUTDPQF

Slide 174

Slide 174 text

#ZUFDPEF#JOBSZ

Slide 175

Slide 175 text

#ZUFDPEF$BO#F 4FSJBMJ[FEBT#JOBSZ

Slide 176

Slide 176 text

KBWBD Parser Byte-Code Generator Optimizer Byte-code Generator Byte Code Byte Code AST Byte Code Binary

Slide 177

Slide 177 text

.BKPS#JOBSZ'PSNBUT VTFEGPS/BUJWF$PEF

Slide 178

Slide 178 text

-JOVY&-'

Slide 179

Slide 179 text

8JOEPXT1&

Slide 180

Slide 180 text

#JOBSZ'PSNBUT w&-'1&BSFGPSNBUTVTFEGPSUIF04QSPHSBN MPBEFS5IFGPSNBUDPOUBJOTUIFOBUJWFDPEF UIF OBUJWFJOTUSVDUJPOT F H YJOTUSVDUJPOTPSBSN JOTUSVDUJPOT  w#ZUFDPEFCJOBSZGPSNBUTBSFVTFEGPS7JSUVBM .BDIJOFTFH +7.VTFTDMBTT %BMWJL7.VTFTEY %&9GPSNBU 1ZUIPOVTFTQZD 1&1 ))7. VTFT))#$

Slide 181

Slide 181 text

No content

Slide 182

Slide 182 text

+7.WT%BMWJL7.

Slide 183

Slide 183 text

4VNNBSZ w%J⒎FSFOUMBOHVBHFEFTJHOMFBETUPEJ⒎FSFOU BQQSPBDIFT w$PNQBDU BMJHOFE DPOUJOVPVTTUSVDUVSFTCSJOHCFUUFS F⒏DJFODZ w7JSUVBM.BDIJOFTBSFTUJMMFWPMWJOH5IFSFBSFTUJMM NBOZDIBMMFOHFTMJLF($ +*5FUD

Slide 184

Slide 184 text

7JSUVBM.BDIJOFT "SF'VO

Slide 185

Slide 185 text

5IF-BTU

Slide 186

Slide 186 text

No content

Slide 187

Slide 187 text

&⒏DJFODZ 㱺&OFSHZ4BWJOH

Slide 188

Slide 188 text

&OFSHZ4BWJOH㱺 &OWJSPONFOU'SJFOEMZ

Slide 189

Slide 189 text

-FU`TIBWFUIJTJONJOE BOE#VJMEB#FUUFS8PSME