͍ΖΜͳGraph
13
13
͖͕͋Δ ϊʔυ͕multi type
Τοδ͕multi type
ϧʔϓ͕͋Δ
Slide 14
Slide 14 text
GraphͰදݱͰ͖Δͷ
14
14
ϊʔυ: ਓʢஉੑ, ঁੑ, …ʣ
Τοδ: ਓؒؔʢ༑ਓ, …ʣ
Structured deep models: Deep learning on graphs and beyond
karate club
Slide 15
Slide 15 text
GraphͰදݱͰ͖Δͷ
15
15
ϊʔυ: ݪࢠʢC, H, …ʣ
Τοδ: ݁߹ʢ୯݁߹, …ʣ
Structured deep models: Deep learning on graphs and beyond
Slide 16
Slide 16 text
GraphͰදݱͰ͖Δͷ
16
16
ϊʔυ: λϯύΫ࣭
Τοδ: PPI
https://academic.oup.com/peds/article/24/9/635/1556325
Structured deep models: Deep learning on graphs and beyond
Slide 17
Slide 17 text
GraphͰදݱͰ͖Δͷ
17
17
ϊʔυ: ΤϯςΟςΟʢਓ໊, ໊, …ʣ
Τοδ: ؔʢॴଐ, ࢠ, …ʣ
Structured deep models: Deep learning on graphs and beyond
Slide 18
Slide 18 text
GraphͰදݱͰ͖Δͷ
18
18
ݱ࣮ͷଟ͘ͷσʔλΛ
άϥϑͰදݱͰ͖Δʂ
Slide 19
Slide 19 text
GraphͰղ͖͍ͨ՝
19
19
ᘳͰͳ͍σʔλͷܽଛ෦Λิͨ͠Γɺ৽͍͠σʔλΛྨͨ͠Γ
ɾϊʔυͷྨ
ɾάϥϑͷྨʢFYԽֶ࣭ͷྨʣ
ɾϦϯΫͷ༧ଌʢϊʔυಉ͕࢜ྡ͔൱͔ʣ
ɾΤοδͷྨ
Structured deep models: Deep learning on graphs and beyond
GNNsͷྺ࢙ᶄ Convolution
Structured deep models: Deep learning on graphs and beyond
CNNͷΈࠐΈͷ֓೦Λಋೖͯ͠ܭࢉޮ↑
26
26
Slide 27
Slide 27 text
Convolutional Neural Neworks͓͞Β͍
27
27
2012: HintonͷAlexNet
σΟʔϓϥʔχϯά͕Γ্͕͖͔͚ͬͨͬ
CNNը૾ͳͲ֨ࢠঢ়ͷσʔλߏʹద༻Մೳ
Structured deep models: Deep learning on graphs and beyond
Graph Convolutional Netoworks
[Duvenaud+ 2015, Li+ 2016, Scichtkrull+ 2017]
29
29
CNNͷΈࠐΈͷ֓೦ΛGraphʹద༻
ΤοδΛॏΈͱͯ͠ѻͬͨ
Structured deep models: Deep learning on graphs and beyond
Slide 30
Slide 30 text
Relational Graph Convolutional Netoworks [Scichtkrull+ 2017]
30
30
relationཁૉΛՃ
graph: G = (V, E, R)
nodes: vi ∈ V
edges: (vi, r, vj) ∈ E
relation type: r ∈ R Schlichtkrull et al., 2017
GNNsͷྺ࢙ᶆ άϥϑͷੜ
Structured deep models: Deep learning on graphs and beyond
Version 1: Generate graph (or predict new links) between known entities
Version 2: Generate graphs from scratch (single embedding vector)
Slide 36
Slide 36 text
GraphͰղ͖͍ͨ՝ “ݹయత*”ͳͷ
36
36
Structured deep models: Deep learning on graphs and beyond
ᘳͰͳ͍σʔλͷܽଛ෦Λิͨ͠Γɺ৽͍͠σʔλΛྨͨ͠Γ
*Kipfᐌ͘classical
Slide 37
Slide 37 text
GraphͰղ͖͍ͨ՝ “৽͍͠”ͷ
37
37
(SBQI"VUPFODPEFST
ྗֶత૬ޓ࡞༻ΛߏΛௐΔ
͜ͱͳ͘ɺάϥϑ͔Βਪఆ͢Δ
ҼՌؔͷਪఆ
λϯύΫ࣭૬ޓ࡞༻ͷղ໌ʹظ
Structured deep models: Deep learning on graphs and beyond
Slide 38
Slide 38 text
GraphͰղ͖͍ͨ՝ “৽͍͠”ͷ
38
38
(SBQI(FOFSBUJWF/FUXPSLT
.PM("/
ࢠΛάϥϑͰදݱ
EFTDSJNJOBUPS("/Ͱֶश
SFXPSE3-Ͱֶश
ࢠͷੜͷԠ༻͕ظ
Structured deep models: Deep learning on graphs and beyond