Slide 28
Slide 28 text
参考⽂献
n 論⽂ (✔ はサーベイ)
Ø [Dinh et al., 2014.] Dinh, L., Krueger, D., and Bengio, Y. (2014). NICE: Non-linear independent
components estimation. International Conference on Learning Representations Workshop.
Ø [Dinh et al., 2017.] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using
Real NVP. International Conference on Learning Representations.
Ø [Kingma & Dhariwal., 2018.] Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with
invertible 1x1 convolutions. In Advances in Neural Information Processing Systems, pages
10236–10245.
Ø [Rezende & Mohamed., 2015.] Rezende, D. and Mohamed, S. (2015). Variational inference with
normalizing flows. In Proceedings of The 32nd International Conference on Machine Learning,
pages 1530–1538.
ü [Kobyzev et al., 2019.] Kobyzev, I., Prince, S., and Brubaker, M. (2019). Normalizing Flows: An
Introduction and Review of Current Methods. arXiv: 1908.09257 [stat.ML]
ü [Papamakarios et la., 2019.] Papamakarios, G., Nalisnick, E., Rezende, D., Mohamed, S., and
Lakshminarayanan, B. (2019). Normalizing Flows for Probabilistic Modeling and Inference. arXiv:
1912.02762 [stat.ML]
n ブログ
Ø [Weng., 2018.] LilʼLog: Flow-based Deep Generative Models.
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
n スライド
Ø [Suzuki., 2019.] DL輪読会のスライド: Flow-based Deep Generative Models
https://www.slideshare.net/DeepLearningJP2016/dlflowbased-deep-generative-models
28
参考⽂献