Slide 1
Slide 1 text
Lux AI Challenge
Copyright 2021 @kuto_bopro
Meta Kaggle
Collection of episodes
・Team: Toad Brigade
・LB score > 1900
・only win game
・about 1000 episodes(3 submissions)
Unet Imitation Learning approach inspired by nosound(@zharch)
obs
horizontal flip vertical flip random roll(-5~5)
TTA
obs obs
Global features
(8ch,4,4)
Observation map
(17ch, 32, 32)
Policy map
(3ch,32,32)
・Units counts (×2)
・Citytiles counts (×2)
・Research points (×2)
・turn / cycle
Data Sampling
・Random sampling up to 4 units
actions in each turn
・Downsampling center actions
Extract units policy
from each units position
Image reference: https://www.lux-ai.org/
・Units position/cooldown/resource (×2)
・Citytiles position/cooldown/fuel-lightupkeep ratio (×2)
・Wood/Coal/Uranium positions
・Road level
・Effective map area
Create 8 pattern policy maps and apply mean
UNet model
Decide citytile actions
by simple rule
Create 4 batch by rotation
input
(4 batches)
Policy maps
(4batch, 3ch, 32, 32) Final policy map
(6ch, 32, 32)
Hierarchize move actions (shared by nosound)
output 3ch
policy map
(4 batches)
90°
180°
270°
90°
180°
270°
0ch: Center Action → batch mean
1ch: Move Action
1st batch: north
2nd batch: west
3rd batch: south
4th batch: east
2ch: Build City Action → batch mean
kuto(@kuto0633)
Final policy map
(6ch,32,32)
Observation maps(4batch, 17ch, 32,32)
0ch: Move Center
1ch: Move North
2ch: Move West
3ch: Move South
4ch: Move East
5ch: Build City
Calculate 4 move actions
as one direction
State Value
(for RL and MCTS but not work)
16 64 64
128 128
256 256
256 256 8
256 256 +8 256 256
128 + 256 128 128
64 + 128 64 64 3
32×32
32×32
32×32
16×16
16×16
16×16
8×8
8×8
8×8
4×4
4×4
4×4
32×32
32×32
32×32
16×16
16×16
8×8
8×8
FC
BN
ReLU
FC
264→64 64→1
Conv2d BatchNorm2d, ReLU
MaxPooling2d
Upsample
Concatenate
Private LB: 34th (score 1570)