Slide 1

Slide 1 text

Low Complexity Models: Robustness and Sensivity Samuel Vaiter CEREMADE, Univ. Paris-Dauphine February 3th, 2014 Présoutenance de thèse J. Fadili G. Peyré C. Dossal M. Golbabaee C. Deledalle IMB GREYC CEREMADE

Slide 2

Slide 2 text

Outline Introduction General Framework Performance Guarantees Parameter Selection

Slide 3

Slide 3 text

Linear Inverse Problem y = Φ x0 + w Observations in Rq Unkown vector in Rn Degradation operator Noise denoising inpainting deblurring

Slide 4

Slide 4 text

Variational Regularization x ∈ argmin x∈RN 1 2 ||Φx − y||2 + λ J(x) (Pλ(y)) Trade-off between data fidelity and prior regularization 2 issues considered in this thesis 1. Performance guarantees: 2 error + model selection 2. Parameter selection: sensivity analysis + risk estimation

Slide 5

Slide 5 text

Outline Introduction General Framework Performance Guarantees Parameter Selection

Slide 6

Slide 6 text

Gauge J(x) 0 J(|λ|x) = |λ|J(x) J convex x → J(x) 1 C C a convex set (0 ∈ C) C = {x : J(x) 1} homogeneous env.

Slide 7

Slide 7 text

Signal Models and Gauges (group) sparsity || · ||1, (|| · ||1,2) antisparsity || · ||∞ low-rank || · ||∗ sparse gradient ||∇ · ||1,2

Slide 8

Slide 8 text

Canonical Model Space 0 x ∂J(x) Tx ex Model space Tx = VectHull(∂J(x))⊥ Generalized sign vector ex = PTx (∂J(x)) Sparsity || · ||1 Tx = {η : supp(η) ⊆ supp(x)} ex = sign(x) Trace Norm || · ||∗ Tx = {η : U∗ ⊥ ηV⊥ = 0} ex = UV ∗ SVD: x = UΛV ∗

Slide 9

Slide 9 text

Outline Introduction General Framework Performance Guarantees Parameter Selection

Slide 10

Slide 10 text

Certificate / Lagrange Multiplier x ∈ argmin Φx=Φx0 J(x) (P0(Φx0)) ∂J(x) x Φx = Φx0 α Dual certificates: Dx0 = Im Φ∗ ∩ ∂J(x0) Proposition ∃α ∈ Dx0 ⇔ x0 solution de (P0(Φx0))

Slide 11

Slide 11 text

Performance Guarantees with 2 norm Tight dual certificates ¯ Dx = Im Φ∗ ∩ ri ∂J(x) Restricted Injectivity Ker Φ ∩ Tx = {0} (RICx ) Theorem If ∃α ∈ ¯ Dx and (RICx ) satisfied and a solution x of (Pλ(y)), then λ ∼ ||w|| ⇒ ||x − x || Cα||w|| PW: [Grasmair et al. 2011] J(x − x ) = O(||w||)

Slide 12

Slide 12 text

Performance Guarantees with Model Selection α ∈ Dx =⇒ α = Φ∗η and αT = ex Minimal-norm precertificates α0 ∈ argmin α=Φ∗η αTx =ex ||η|| Proposition If (RICx ), then α0=(Φ+ Tx Φ)∗ex Theorem If α0 ∈ ¯ Dx0 , for λ ∼ ||w|| small enough, the unique solution x of (Pλ(y)) satifies Tx = Tx0 and ||x0 − x || = O(||w||) PW: [Fuchs 2004] ( 1), [Bach 2008] ( 1 − 2, nuclear)

Slide 13

Slide 13 text

1D TV Denoising Φ = Id J(x) = ||∇x||1 α0 ∈ ¯ Dx ⇐⇒ α0 = div q and ||qIc ,0||∞ < 1 i xi i xi k q0,k k +1 −1 Support stability No support stability Both are 2-stable

Slide 14

Slide 14 text

Outline Introduction General Framework Performance Guarantees Parameter Selection

Slide 15

Slide 15 text

Parameter Selection Y = Φx0 + W ∼ N(Φx0, σ2) Prediction: µ(y) = Φx∗(y) Prediction risk: R(λ) = EW [||Φx0 − µ(Y )||2] In practice, projected risk or estimation risk

Slide 16

Slide 16 text

Stein Unbiased Risk Estimation First order approximation µ(y + δ) = µ(y) + Dµ(y) · δ + O(||δ||2) Stein Unbiased Risk Estimation SURE(y) = ||y − µ(y)||2 − σ2Q + 2σ2df (y) df (y) = tr[Dµ(y)] Proposition (Stein 1981) If µ weakly differentiable, then EW [SURE(Y )] = EW [||Φx0 − µ(Y )||2]

Slide 17

Slide 17 text

Local Behavior x (y) ∈ argmin x∈Rn 1 2 ||y − Φx||2 + λJ(x) (Pλ(y)) We assume that T = {Tx : x ∈ Rn} is finite. Theorem Assuming that J is definable in an O-minimal structure O, y → µ(y) = Φx (y) is differentiable except on a zero measure set H and div(µ)(y) = −ΦT (Φ∗ T ΦT + De(x∗))−1Φ∗ T where T = Tx∗ . H is definable in O and can be explicitely stated. PW: [Dossal 2012] ( 1, df = ||x (y)||0 )

Slide 18

Slide 18 text

Risk Estimation in Practice Φ subsampled Radon transform (16 measures), J(x) = ||∇x||1,2 x0 Φ+y x∗ λopt (y)

Slide 19

Slide 19 text

Future Work • Extension to the infinite dimensional setting Grid-free setting Total Variation case • Efficient SURE computation Model SURE vs Algorithm SURE • Better understanding of the geometry Optimization over ¯ Dx Behavior of α ∈ Dx \ ¯ Dx • Performance in CS settings

Slide 20

Slide 20 text

Thanks for your attention ! V., J. Fadili, G. Peyré and C. Dossal, Robust sparse analysis regularization, Information Theory, 2013 V., C. Deledalle, J. Fadili, G. Peyré and C. Dossal, Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation, ACHA, 2012 V., M. Golbabaee, M. J. Fadili et G. Peyré, Model Selection with Piecewise Regular Gauges, Tech. report, http://arxiv.org/abs/1307.2342, 2013 J. Fadili, V. and G. Peyré, Linear Convergence Rates for Gauge Regularization, ongoing work V., C. Deledalle, J. Fadili, G. Peyré and C. Dossal, The Degrees of Freedom of Block Analysis Regularizers, ongoing work