Slide 39
Slide 39 text
Sources
[Horkoff+19] Horkoff, J. (2019, September). Non-functional requirements for machine
learning: Challenges and new directions. In 2019 IEEE 27th International Requirements
Engineering Conference (RE)(pp. 386-391). IEEE.
[Guynn+15] J. Guynn, “Google photos labeled black people ’gorillas’,”
http://www.usatoday.com/story/tech/2015/ 07/01/google-apologizes-after-photos-
identify-black-people-as-gorillas/29567465/, July 2015, 2020/12/6
[Kusner+17] Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual
fairness. In Advances in neural information processing systems (pp. 4066-4076).
[Strubell+2019] Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy
considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.
[Tramer+17] Tramer, F., Atlidakis, V., Geambasu, R., Hsu, D., Hubaux, J. P., Humbert, M.,
... & Lin, H. (2017, April). FairTest: Discovering unwarranted associations in data-driven
applications. In 2017 IEEE European Symposium on Security and Privacy (EuroS&P) (pp.
401-416). IEEE.
[Valentino-Devries+12] J. Valentino-Devries, J. Singer-Vine, and A. Soltani, “Websites
vary prices, deals based on users’ infor- mation,”
http://www.wsj.com/articles/SB10001424127887323777204578189391813881534, Dec
2012., accessed 2020/12/6
[VentureBeat+19] https://venturebeat.com/2019/07/19/why-do-87-of-data-science-
projects-never-make-it-into-production/, accessed 2020/12/6
[Zhang+20] Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2020). Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering.