Slide 12
Slide 12 text
Keras API を用いたモデル定義と学習処理の例
12
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(1,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.summary()
==================================================================
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 256) 512
_________________________________________________________________
dense_1 (Dense) (None, 128) 32896
_________________________________________________________________
dense_2 (Dense) (None, 64) 8256
_________________________________________________________________
dense_3 (Dense) (None, 1) 65
=================================================================
Total params: 41,729
Trainable params: 41,729
Non-trainable params: 0
_________________________________________________________________
model.compile(optimizer='adam', loss='mse')
history = model.fit(xs, ys, batch_size=len(xs),
epochs=10000, verbose=0)
DataFrame({'loss': history.history['loss']}).plot()