Slide 14
Slide 14 text
Do the GSA metrics admit a
dynamical system?
A data-driven approach …
Given pairs:
Fit a model:
TONS of open questions about this promising approach!
Aguiar, I. P., Dynamic active subspaces: A data-driven approach to computing
time-dependent active subspaces in dynamical systems, MS Thesis (2018)
Brunton, S. L. et al., Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, PNAS (2016)
(⌫i, ˙
⌫i), i = 1, . . . , N
AAAWf3icjZhrb9s2FIbV7tZ5t3TD8mVftHnFWiAI7GDANmAD2qRpmjRN0yZ24kSBQcm0xUS3UpRjR9AP2q/Z1/XfjJRkRxbfZDEQhOL7HJ5DUaTOkR15LBat1od79z/6+JNPP3vweeOLL7/6+pulh9924zDhDu04oRfyY5vE1GMB7QgmPHoccUp826NH9sWG0o/GlMcsDA7FNKJnPhkFbMgcImRXf2njsWWH3iCe+vJfagVJ1mcr1oo1CEVaV6T0ZMW03idkYLK/2jkUr5h7/aVma7WV/0y90S4bTaP87fcffv+ztHUSnwbC8Ugcn7ZbkThLCRfM8WjWsJKYRsS5ICN6KpsB8Wl8luazzcxHsmdgDkMu/wJh5r1Vi5T4sYpakj4RblzXVCfSThMx/P0sZUGUCBo4haNh4pkiNNWtMweMU0d4U9kgDmcyVtNxCSeOkDe40bAiHo7ZgDqh75NgkFrSQ3baPlu4j812lj1qWJwG9HIOjqlTgCome5hDDatGEA+P1mg8MjcKLpZNpZpJFFFuOvK50KOiU5rlntJt5UUL+plUaRAnnKpoCvJZBtF1gK5jdAOgGxh9DtDnGN0E6CZGXwD0BUa3ALqF0ZcAfYnRbYBuY3QHoDsYfQXQVxjdBeguRl8D9DVG9wC6h9E3AH2D0X2A7mP0LUDfYvQdQN9h9ACgBxg9BOghRjsA7WC0C9AuRo8AeoTRY4AeY7QH0B5GTwB6csNDKF9NAwJ4q1TwarCRD40KAdpcUR4Ck5aidTwMaJzl52xK0XDjuntFYs9jG6A2Rh2AOhgdAHSAUQpQitEhQIcYHQF0hFEXoC5GGUAZRs8Beo7RC4BeYNQDqIdRH6A+RgOABhitP6UKDTEaATTC6HuAvscoByjHaAzQGKMCoAKjCUATjI4BOsboJUAvMToB6ASjU4BOMXoF0KsbFhZsA5nwpVaU7wWZ18Uy44zEQmZXTRDjZ0VS50ozla7V1PWKuq6pmxV1U1O3K+q2pu5U1B1N3auoe5p6UFEPNPW4oh5raq+i9opb5BIR/7iIuXni6apXhWxldXFrLm5p4vxN5VbfTjXo0KVizhQXmpPO3ElHF7tzsauLR3PxSBO9hfA8HJ6ohidgePk2yXXZ0sTpXJzq4tVcvNLEXqn1NOWkVE40Je7N53u9sNWH3wsv8cOv9q/jspzNC6ARp/RiEbKJF7nqZkhgVtQWXbU47CBZpFTpm0cR+tQsa0JnVnEtmLIoO12TJZpHh0KuSTDyqNmUhfJKc83ibOQKi+edNY+bk6hS/9lyD+YjnDbbhdVZjd8Ix4WfUB4GRIRcFcip6p3ZVVzqxpxDa9l9B/Mu4UWsC9aq9/aY93loF27LSe7PDG5wZF+Xz3TEglRdczbJpAMq9dllzWowmBRehrIul8en+qRAPLkI2fXFpJ8217K6JeEylZwUHpNgIEt6KtLcbmGmJYasWXAnaxZo1rKP/a+tgvzE143J5A7GEkLGsXpNCzoRaZzY59QR6mtHHRLyXlKw6kV/voyPZ+v+JN8q6uuMTaY0ZiQwWVB+gVocNeIsVKkHd8N+beCIa4Hm9PRGfEU7n3KDq5sNtDPLYxeYVoL2nDmhSkW2iLzu59l53X2Y31rkPIy14ZwCd+7GMkWq1KB2gI7K83OkHa15fpEfrSqhqI3nFgNWgBoxopFM/EZ9WQVx2WReGNRny3JE/r8FckpKuaqB2kyK4YrJ3DKkO3M8C/02927FP+S1FKAceLeu7Obj7N4W2O51XLu3RTURPFH12lieSsVGzDvUG6e/1GzXv6Lqje7aaru12n77a/Ppn+UX1gfGD8ZPxmOjbfxmPDVeGvtGx3CMv41/jH+ND8v3ln9ZXl1uFej9e6XNd8bCb/mP/wB8cuaj
AAAWf3icjZhrb9s2FIbV7tZ5t3TD8mVftHnFWiAI7GDANmAD2qRpmjRN0yZ24kSBQcm0xUS3UpRjR9AP2q/Z1/XfjJRkRxbfZDEQhOL7HJ5DUaTOkR15LBat1od79z/6+JNPP3vweeOLL7/6+pulh9924zDhDu04oRfyY5vE1GMB7QgmPHoccUp826NH9sWG0o/GlMcsDA7FNKJnPhkFbMgcImRXf2njsWWH3iCe+vJfagVJ1mcr1oo1CEVaV6T0ZMW03idkYLK/2jkUr5h7/aVma7WV/0y90S4bTaP87fcffv+ztHUSnwbC8Ugcn7ZbkThLCRfM8WjWsJKYRsS5ICN6KpsB8Wl8luazzcxHsmdgDkMu/wJh5r1Vi5T4sYpakj4RblzXVCfSThMx/P0sZUGUCBo4haNh4pkiNNWtMweMU0d4U9kgDmcyVtNxCSeOkDe40bAiHo7ZgDqh75NgkFrSQ3baPlu4j812lj1qWJwG9HIOjqlTgCome5hDDatGEA+P1mg8MjcKLpZNpZpJFFFuOvK50KOiU5rlntJt5UUL+plUaRAnnKpoCvJZBtF1gK5jdAOgGxh9DtDnGN0E6CZGXwD0BUa3ALqF0ZcAfYnRbYBuY3QHoDsYfQXQVxjdBeguRl8D9DVG9wC6h9E3AH2D0X2A7mP0LUDfYvQdQN9h9ACgBxg9BOghRjsA7WC0C9AuRo8AeoTRY4AeY7QH0B5GTwB6csNDKF9NAwJ4q1TwarCRD40KAdpcUR4Ck5aidTwMaJzl52xK0XDjuntFYs9jG6A2Rh2AOhgdAHSAUQpQitEhQIcYHQF0hFEXoC5GGUAZRs8Beo7RC4BeYNQDqIdRH6A+RgOABhitP6UKDTEaATTC6HuAvscoByjHaAzQGKMCoAKjCUATjI4BOsboJUAvMToB6ASjU4BOMXoF0KsbFhZsA5nwpVaU7wWZ18Uy44zEQmZXTRDjZ0VS50ozla7V1PWKuq6pmxV1U1O3K+q2pu5U1B1N3auoe5p6UFEPNPW4oh5raq+i9opb5BIR/7iIuXni6apXhWxldXFrLm5p4vxN5VbfTjXo0KVizhQXmpPO3ElHF7tzsauLR3PxSBO9hfA8HJ6ohidgePk2yXXZ0sTpXJzq4tVcvNLEXqn1NOWkVE40Je7N53u9sNWH3wsv8cOv9q/jspzNC6ARp/RiEbKJF7nqZkhgVtQWXbU47CBZpFTpm0cR+tQsa0JnVnEtmLIoO12TJZpHh0KuSTDyqNmUhfJKc83ibOQKi+edNY+bk6hS/9lyD+YjnDbbhdVZjd8Ix4WfUB4GRIRcFcip6p3ZVVzqxpxDa9l9B/Mu4UWsC9aq9/aY93loF27LSe7PDG5wZF+Xz3TEglRdczbJpAMq9dllzWowmBRehrIul8en+qRAPLkI2fXFpJ8217K6JeEylZwUHpNgIEt6KtLcbmGmJYasWXAnaxZo1rKP/a+tgvzE143J5A7GEkLGsXpNCzoRaZzY59QR6mtHHRLyXlKw6kV/voyPZ+v+JN8q6uuMTaY0ZiQwWVB+gVocNeIsVKkHd8N+beCIa4Hm9PRGfEU7n3KDq5sNtDPLYxeYVoL2nDmhSkW2iLzu59l53X2Y31rkPIy14ZwCd+7GMkWq1KB2gI7K83OkHa15fpEfrSqhqI3nFgNWgBoxopFM/EZ9WQVx2WReGNRny3JE/r8FckpKuaqB2kyK4YrJ3DKkO3M8C/02927FP+S1FKAceLeu7Obj7N4W2O51XLu3RTURPFH12lieSsVGzDvUG6e/1GzXv6Lqje7aaru12n77a/Ppn+UX1gfGD8ZPxmOjbfxmPDVeGvtGx3CMv41/jH+ND8v3ln9ZXl1uFej9e6XNd8bCb/mP/wB8cuaj
AAAWf3icjZhrb9s2FIbV7tZ5t3TD8mVftHnFWiAI7GDANmAD2qRpmjRN0yZ24kSBQcm0xUS3UpRjR9AP2q/Z1/XfjJRkRxbfZDEQhOL7HJ5DUaTOkR15LBat1od79z/6+JNPP3vweeOLL7/6+pulh9924zDhDu04oRfyY5vE1GMB7QgmPHoccUp826NH9sWG0o/GlMcsDA7FNKJnPhkFbMgcImRXf2njsWWH3iCe+vJfagVJ1mcr1oo1CEVaV6T0ZMW03idkYLK/2jkUr5h7/aVma7WV/0y90S4bTaP87fcffv+ztHUSnwbC8Ugcn7ZbkThLCRfM8WjWsJKYRsS5ICN6KpsB8Wl8luazzcxHsmdgDkMu/wJh5r1Vi5T4sYpakj4RblzXVCfSThMx/P0sZUGUCBo4haNh4pkiNNWtMweMU0d4U9kgDmcyVtNxCSeOkDe40bAiHo7ZgDqh75NgkFrSQ3baPlu4j812lj1qWJwG9HIOjqlTgCome5hDDatGEA+P1mg8MjcKLpZNpZpJFFFuOvK50KOiU5rlntJt5UUL+plUaRAnnKpoCvJZBtF1gK5jdAOgGxh9DtDnGN0E6CZGXwD0BUa3ALqF0ZcAfYnRbYBuY3QHoDsYfQXQVxjdBeguRl8D9DVG9wC6h9E3AH2D0X2A7mP0LUDfYvQdQN9h9ACgBxg9BOghRjsA7WC0C9AuRo8AeoTRY4AeY7QH0B5GTwB6csNDKF9NAwJ4q1TwarCRD40KAdpcUR4Ck5aidTwMaJzl52xK0XDjuntFYs9jG6A2Rh2AOhgdAHSAUQpQitEhQIcYHQF0hFEXoC5GGUAZRs8Beo7RC4BeYNQDqIdRH6A+RgOABhitP6UKDTEaATTC6HuAvscoByjHaAzQGKMCoAKjCUATjI4BOsboJUAvMToB6ASjU4BOMXoF0KsbFhZsA5nwpVaU7wWZ18Uy44zEQmZXTRDjZ0VS50ozla7V1PWKuq6pmxV1U1O3K+q2pu5U1B1N3auoe5p6UFEPNPW4oh5raq+i9opb5BIR/7iIuXni6apXhWxldXFrLm5p4vxN5VbfTjXo0KVizhQXmpPO3ElHF7tzsauLR3PxSBO9hfA8HJ6ohidgePk2yXXZ0sTpXJzq4tVcvNLEXqn1NOWkVE40Je7N53u9sNWH3wsv8cOv9q/jspzNC6ARp/RiEbKJF7nqZkhgVtQWXbU47CBZpFTpm0cR+tQsa0JnVnEtmLIoO12TJZpHh0KuSTDyqNmUhfJKc83ibOQKi+edNY+bk6hS/9lyD+YjnDbbhdVZjd8Ix4WfUB4GRIRcFcip6p3ZVVzqxpxDa9l9B/Mu4UWsC9aq9/aY93loF27LSe7PDG5wZF+Xz3TEglRdczbJpAMq9dllzWowmBRehrIul8en+qRAPLkI2fXFpJ8217K6JeEylZwUHpNgIEt6KtLcbmGmJYasWXAnaxZo1rKP/a+tgvzE143J5A7GEkLGsXpNCzoRaZzY59QR6mtHHRLyXlKw6kV/voyPZ+v+JN8q6uuMTaY0ZiQwWVB+gVocNeIsVKkHd8N+beCIa4Hm9PRGfEU7n3KDq5sNtDPLYxeYVoL2nDmhSkW2iLzu59l53X2Y31rkPIy14ZwCd+7GMkWq1KB2gI7K83OkHa15fpEfrSqhqI3nFgNWgBoxopFM/EZ9WQVx2WReGNRny3JE/r8FckpKuaqB2kyK4YrJ3DKkO3M8C/02927FP+S1FKAceLeu7Obj7N4W2O51XLu3RTURPFH12lieSsVGzDvUG6e/1GzXv6Lqje7aaru12n77a/Ppn+UX1gfGD8ZPxmOjbfxmPDVeGvtGx3CMv41/jH+ND8v3ln9ZXl1uFej9e6XNd8bCb/mP/wB8cuaj
AAAWf3icjZhrb9s2FIbV7tZ5t3TD8mVftHnFWiAI7GDANmAD2qRpmjRN0yZ24kSBQcm0xUS3UpRjR9AP2q/Z1/XfjJRkRxbfZDEQhOL7HJ5DUaTOkR15LBat1od79z/6+JNPP3vweeOLL7/6+pulh9924zDhDu04oRfyY5vE1GMB7QgmPHoccUp826NH9sWG0o/GlMcsDA7FNKJnPhkFbMgcImRXf2njsWWH3iCe+vJfagVJ1mcr1oo1CEVaV6T0ZMW03idkYLK/2jkUr5h7/aVma7WV/0y90S4bTaP87fcffv+ztHUSnwbC8Ugcn7ZbkThLCRfM8WjWsJKYRsS5ICN6KpsB8Wl8luazzcxHsmdgDkMu/wJh5r1Vi5T4sYpakj4RblzXVCfSThMx/P0sZUGUCBo4haNh4pkiNNWtMweMU0d4U9kgDmcyVtNxCSeOkDe40bAiHo7ZgDqh75NgkFrSQ3baPlu4j812lj1qWJwG9HIOjqlTgCome5hDDatGEA+P1mg8MjcKLpZNpZpJFFFuOvK50KOiU5rlntJt5UUL+plUaRAnnKpoCvJZBtF1gK5jdAOgGxh9DtDnGN0E6CZGXwD0BUa3ALqF0ZcAfYnRbYBuY3QHoDsYfQXQVxjdBeguRl8D9DVG9wC6h9E3AH2D0X2A7mP0LUDfYvQdQN9h9ACgBxg9BOghRjsA7WC0C9AuRo8AeoTRY4AeY7QH0B5GTwB6csNDKF9NAwJ4q1TwarCRD40KAdpcUR4Ck5aidTwMaJzl52xK0XDjuntFYs9jG6A2Rh2AOhgdAHSAUQpQitEhQIcYHQF0hFEXoC5GGUAZRs8Beo7RC4BeYNQDqIdRH6A+RgOABhitP6UKDTEaATTC6HuAvscoByjHaAzQGKMCoAKjCUATjI4BOsboJUAvMToB6ASjU4BOMXoF0KsbFhZsA5nwpVaU7wWZ18Uy44zEQmZXTRDjZ0VS50ozla7V1PWKuq6pmxV1U1O3K+q2pu5U1B1N3auoe5p6UFEPNPW4oh5raq+i9opb5BIR/7iIuXni6apXhWxldXFrLm5p4vxN5VbfTjXo0KVizhQXmpPO3ElHF7tzsauLR3PxSBO9hfA8HJ6ohidgePk2yXXZ0sTpXJzq4tVcvNLEXqn1NOWkVE40Je7N53u9sNWH3wsv8cOv9q/jspzNC6ARp/RiEbKJF7nqZkhgVtQWXbU47CBZpFTpm0cR+tQsa0JnVnEtmLIoO12TJZpHh0KuSTDyqNmUhfJKc83ibOQKi+edNY+bk6hS/9lyD+YjnDbbhdVZjd8Ix4WfUB4GRIRcFcip6p3ZVVzqxpxDa9l9B/Mu4UWsC9aq9/aY93loF27LSe7PDG5wZF+Xz3TEglRdczbJpAMq9dllzWowmBRehrIul8en+qRAPLkI2fXFpJ8217K6JeEylZwUHpNgIEt6KtLcbmGmJYasWXAnaxZo1rKP/a+tgvzE143J5A7GEkLGsXpNCzoRaZzY59QR6mtHHRLyXlKw6kV/voyPZ+v+JN8q6uuMTaY0ZiQwWVB+gVocNeIsVKkHd8N+beCIa4Hm9PRGfEU7n3KDq5sNtDPLYxeYVoL2nDmhSkW2iLzu59l53X2Y31rkPIy14ZwCd+7GMkWq1KB2gI7K83OkHa15fpEfrSqhqI3nFgNWgBoxopFM/EZ9WQVx2WReGNRny3JE/r8FckpKuaqB2kyK4YrJ3DKkO3M8C/02927FP+S1FKAceLeu7Obj7N4W2O51XLu3RTURPFH12lieSsVGzDvUG6e/1GzXv6Lqje7aaru12n77a/Ppn+UX1gfGD8ZPxmOjbfxmPDVeGvtGx3CMv41/jH+ND8v3ln9ZXl1uFej9e6XNd8bCb/mP/wB8cuaj
˙
⌫i
⇡ ˆ
G(⌫i)
AAAWfHicjZhdb9s2FIbV7qvzvtINzc1utLkFWrQr7GDYBnQXbdI0TZqmaRM7caLAoGTaYqOvUpRjR9Df2a/Z7QbszwwjJdmRxTdZDASh+D6H54gUqXNkRx6LRav1z42bH338yaef3fq88cWXX339zdLtb7txmHCHdpzQC/mhTWLqsYB2BBMePYw4Jb7t0QP7dE3pB2PKYxYG+2Ia0ROfjAI2ZA4Rsqu/9NQahCK17NAbxFNf/kutIMmyPjOtJxaJIh5OrCem5RKRbmT361yfPegvNVuPW/nP1BvtstE0yt9u//adu9Knk/g0EI5H4vi43YrESUq4YI5Hs4aVxDQizikZ0WPZDIhP45M0v9XMvCd7BuYw5PIvEGbeW7VIiR+rACXpE+HGdU11Iu04EcPfTlIWRImggVM4GiaeKUJTzZs5YJw6wpvKBnE4k7Gajks4cYSc3UbDkjM1ZgPqhL5PgkFqSQ/ZcftkYWqb7Sy717A4DejZHBxTpwBVTPYwhxpWjSAeHq3RuGeuFVwsm0o1kyii3HTkQ6FHRac0yz2lm8qLFvQzqdIgTjhV0RTkswyiqwBdxegaQNcw+hygzzG6DtB1jL4A6AuMbgB0A6MvAfoSo5sA3cToFkC3MPoKoK8wug3QbYy+BuhrjO4AdAejbwD6BqO7AN3F6FuAvsXoO4C+w+geQPcwug/QfYx2ANrBaBegXYweAPQAo4cAPcRoD6A9jB4B9OiSh1C+lwYE8Fap4NVgIx8aFQK0Oac8BCYtRet4GNA4y8/ZlKLhxnX3isSexzZAbYw6AHUwOgDoAKMUoBSjQ4AOMToC6AijLkBdjDKAMoy+B+h7jJ4C9BSjHkA9jPoA9TEaADTAaP0pVWiI0QigEUY/APQDRjlAOUZjgMYYFQAVGE0AmmB0DNAxRs8AeobRCUAnGJ0CdIrRc4CeX7KwYBvIhC+1onwvyLwulhlnJBYyu2qCGD8rkjpXmql0raauVtRVTV2vqOuaullRNzV1q6JuaepORd3R1L2KuqephxX1UFN7FbVXTJGsUOIfFjE3TzxV6aJS0KwubszFDU2cv6nc6tupBu27VMyZ4kJz0pk76ehidy52dfFgLh5oorcQnofDE9XwBAwv3ya5LluaOJ2LU108n4vnmtgrtZ6mHJXKkabEvfn9Xixs9eH3wjP88Kv967gsZ/MCaMQpPV2EbOJFrpoMCczq16KrFocdJIuUqobzKEKfmmVN6MwqrgVTFmXHK7JE8+hQyDUJRh41m+1H1qPmisXZyBUWzztrHtcnUaX+s+UezEc4brYLq5MavxaOCz+hPAyICLkqkFPVO7OruNSNOYfWsvsa5l3Ci1gXrFXv1THv8tAu3JY3uTszuMSRfVE+0xELUnXN2SSTDqjUZ5c1q8FgUngZyrpcHp/qkwLx5CJkFxeTftpcyeqWhMtUclJ4TIKBLOmpSHO7hTstMWTNgmtZs0Czln3sf20V5Ce+bkwm1zCWEDKO1Wta0IlI48R+Tx2hvnbUISHnkoJVL/rzZbw/W/cH+VZRX2dsMqUxI4HJgvLz0+KoEWehSj24G/ZrA0dcCzSnp5fij7TzKTc4v9xAO7M8doppJWjPmROqVGSDyOt+np3X3Yf51CLnYawN5xS4cz2WKVKlBrUDdFSenyPtaM3zi/xoVQlFbTy3GLAC1IgRjWTiN+rLKojLJvPCoH63LEfk/ysgp6SUqxqo3UkxXHEzVwzpzhzPQr/KvVvxD3ktBSgH3q4r2/k421cFtn0R1/ZVUU0ET1S9NpanUrER8w71xukvNdv1r6h6o7vyuN163H77c/Pp7+UX1lvG98aPxn2jbfxqPDVeGrtGx3CMP4w/jb+Mv+/8u3x3+eHyTwV680Zp852x8Fv+5T8c4Ofm
AAAWfHicjZhdb9s2FIbV7qvzvtINzc1utLkFWrQr7GDYBnQXbdI0TZqmaRM7caLAoGTaYqOvUpRjR9Df2a/Z7QbszwwjJdmRxTdZDASh+D6H54gUqXNkRx6LRav1z42bH338yaef3fq88cWXX339zdLtb7txmHCHdpzQC/mhTWLqsYB2BBMePYw4Jb7t0QP7dE3pB2PKYxYG+2Ia0ROfjAI2ZA4Rsqu/9NQahCK17NAbxFNf/kutIMmyPjOtJxaJIh5OrCem5RKRbmT361yfPegvNVuPW/nP1BvtstE0yt9u//adu9Knk/g0EI5H4vi43YrESUq4YI5Hs4aVxDQizikZ0WPZDIhP45M0v9XMvCd7BuYw5PIvEGbeW7VIiR+rACXpE+HGdU11Iu04EcPfTlIWRImggVM4GiaeKUJTzZs5YJw6wpvKBnE4k7Gajks4cYSc3UbDkjM1ZgPqhL5PgkFqSQ/ZcftkYWqb7Sy717A4DejZHBxTpwBVTPYwhxpWjSAeHq3RuGeuFVwsm0o1kyii3HTkQ6FHRac0yz2lm8qLFvQzqdIgTjhV0RTkswyiqwBdxegaQNcw+hygzzG6DtB1jL4A6AuMbgB0A6MvAfoSo5sA3cToFkC3MPoKoK8wug3QbYy+BuhrjO4AdAejbwD6BqO7AN3F6FuAvsXoO4C+w+geQPcwug/QfYx2ANrBaBegXYweAPQAo4cAPcRoD6A9jB4B9OiSh1C+lwYE8Fap4NVgIx8aFQK0Oac8BCYtRet4GNA4y8/ZlKLhxnX3isSexzZAbYw6AHUwOgDoAKMUoBSjQ4AOMToC6AijLkBdjDKAMoy+B+h7jJ4C9BSjHkA9jPoA9TEaADTAaP0pVWiI0QigEUY/APQDRjlAOUZjgMYYFQAVGE0AmmB0DNAxRs8AeobRCUAnGJ0CdIrRc4CeX7KwYBvIhC+1onwvyLwulhlnJBYyu2qCGD8rkjpXmql0raauVtRVTV2vqOuaullRNzV1q6JuaepORd3R1L2KuqephxX1UFN7FbVXTJGsUOIfFjE3TzxV6aJS0KwubszFDU2cv6nc6tupBu27VMyZ4kJz0pk76ehidy52dfFgLh5oorcQnofDE9XwBAwv3ya5LluaOJ2LU108n4vnmtgrtZ6mHJXKkabEvfn9Xixs9eH3wjP88Kv967gsZ/MCaMQpPV2EbOJFrpoMCczq16KrFocdJIuUqobzKEKfmmVN6MwqrgVTFmXHK7JE8+hQyDUJRh41m+1H1qPmisXZyBUWzztrHtcnUaX+s+UezEc4brYLq5MavxaOCz+hPAyICLkqkFPVO7OruNSNOYfWsvsa5l3Ci1gXrFXv1THv8tAu3JY3uTszuMSRfVE+0xELUnXN2SSTDqjUZ5c1q8FgUngZyrpcHp/qkwLx5CJkFxeTftpcyeqWhMtUclJ4TIKBLOmpSHO7hTstMWTNgmtZs0Czln3sf20V5Ce+bkwm1zCWEDKO1Wta0IlI48R+Tx2hvnbUISHnkoJVL/rzZbw/W/cH+VZRX2dsMqUxI4HJgvLz0+KoEWehSj24G/ZrA0dcCzSnp5fij7TzKTc4v9xAO7M8doppJWjPmROqVGSDyOt+np3X3Yf51CLnYawN5xS4cz2WKVKlBrUDdFSenyPtaM3zi/xoVQlFbTy3GLAC1IgRjWTiN+rLKojLJvPCoH63LEfk/ysgp6SUqxqo3UkxXHEzVwzpzhzPQr/KvVvxD3ktBSgH3q4r2/k421cFtn0R1/ZVUU0ET1S9NpanUrER8w71xukvNdv1r6h6o7vyuN163H77c/Pp7+UX1lvG98aPxn2jbfxqPDVeGrtGx3CMP4w/jb+Mv+/8u3x3+eHyTwV680Zp852x8Fv+5T8c4Ofm
AAAWfHicjZhdb9s2FIbV7qvzvtINzc1utLkFWrQr7GDYBnQXbdI0TZqmaRM7caLAoGTaYqOvUpRjR9Df2a/Z7QbszwwjJdmRxTdZDASh+D6H54gUqXNkRx6LRav1z42bH338yaef3fq88cWXX339zdLtb7txmHCHdpzQC/mhTWLqsYB2BBMePYw4Jb7t0QP7dE3pB2PKYxYG+2Ia0ROfjAI2ZA4Rsqu/9NQahCK17NAbxFNf/kutIMmyPjOtJxaJIh5OrCem5RKRbmT361yfPegvNVuPW/nP1BvtstE0yt9u//adu9Knk/g0EI5H4vi43YrESUq4YI5Hs4aVxDQizikZ0WPZDIhP45M0v9XMvCd7BuYw5PIvEGbeW7VIiR+rACXpE+HGdU11Iu04EcPfTlIWRImggVM4GiaeKUJTzZs5YJw6wpvKBnE4k7Gajks4cYSc3UbDkjM1ZgPqhL5PgkFqSQ/ZcftkYWqb7Sy717A4DejZHBxTpwBVTPYwhxpWjSAeHq3RuGeuFVwsm0o1kyii3HTkQ6FHRac0yz2lm8qLFvQzqdIgTjhV0RTkswyiqwBdxegaQNcw+hygzzG6DtB1jL4A6AuMbgB0A6MvAfoSo5sA3cToFkC3MPoKoK8wug3QbYy+BuhrjO4AdAejbwD6BqO7AN3F6FuAvsXoO4C+w+geQPcwug/QfYx2ANrBaBegXYweAPQAo4cAPcRoD6A9jB4B9OiSh1C+lwYE8Fap4NVgIx8aFQK0Oac8BCYtRet4GNA4y8/ZlKLhxnX3isSexzZAbYw6AHUwOgDoAKMUoBSjQ4AOMToC6AijLkBdjDKAMoy+B+h7jJ4C9BSjHkA9jPoA9TEaADTAaP0pVWiI0QigEUY/APQDRjlAOUZjgMYYFQAVGE0AmmB0DNAxRs8AeobRCUAnGJ0CdIrRc4CeX7KwYBvIhC+1onwvyLwulhlnJBYyu2qCGD8rkjpXmql0raauVtRVTV2vqOuaullRNzV1q6JuaepORd3R1L2KuqephxX1UFN7FbVXTJGsUOIfFjE3TzxV6aJS0KwubszFDU2cv6nc6tupBu27VMyZ4kJz0pk76ehidy52dfFgLh5oorcQnofDE9XwBAwv3ya5LluaOJ2LU108n4vnmtgrtZ6mHJXKkabEvfn9Xixs9eH3wjP88Kv967gsZ/MCaMQpPV2EbOJFrpoMCczq16KrFocdJIuUqobzKEKfmmVN6MwqrgVTFmXHK7JE8+hQyDUJRh41m+1H1qPmisXZyBUWzztrHtcnUaX+s+UezEc4brYLq5MavxaOCz+hPAyICLkqkFPVO7OruNSNOYfWsvsa5l3Ci1gXrFXv1THv8tAu3JY3uTszuMSRfVE+0xELUnXN2SSTDqjUZ5c1q8FgUngZyrpcHp/qkwLx5CJkFxeTftpcyeqWhMtUclJ4TIKBLOmpSHO7hTstMWTNgmtZs0Czln3sf20V5Ce+bkwm1zCWEDKO1Wta0IlI48R+Tx2hvnbUISHnkoJVL/rzZbw/W/cH+VZRX2dsMqUxI4HJgvLz0+KoEWehSj24G/ZrA0dcCzSnp5fij7TzKTc4v9xAO7M8doppJWjPmROqVGSDyOt+np3X3Yf51CLnYawN5xS4cz2WKVKlBrUDdFSenyPtaM3zi/xoVQlFbTy3GLAC1IgRjWTiN+rLKojLJvPCoH63LEfk/ysgp6SUqxqo3UkxXHEzVwzpzhzPQr/KvVvxD3ktBSgH3q4r2/k421cFtn0R1/ZVUU0ET1S9NpanUrER8w71xukvNdv1r6h6o7vyuN163H77c/Pp7+UX1lvG98aPxn2jbfxqPDVeGrtGx3CMP4w/jb+Mv+/8u3x3+eHyTwV680Zp852x8Fv+5T8c4Ofm
AAAWfHicjZhdb9s2FIbV7qvzvtINzc1utLkFWrQr7GDYBnQXbdI0TZqmaRM7caLAoGTaYqOvUpRjR9Df2a/Z7QbszwwjJdmRxTdZDASh+D6H54gUqXNkRx6LRav1z42bH338yaef3fq88cWXX339zdLtb7txmHCHdpzQC/mhTWLqsYB2BBMePYw4Jb7t0QP7dE3pB2PKYxYG+2Ia0ROfjAI2ZA4Rsqu/9NQahCK17NAbxFNf/kutIMmyPjOtJxaJIh5OrCem5RKRbmT361yfPegvNVuPW/nP1BvtstE0yt9u//adu9Knk/g0EI5H4vi43YrESUq4YI5Hs4aVxDQizikZ0WPZDIhP45M0v9XMvCd7BuYw5PIvEGbeW7VIiR+rACXpE+HGdU11Iu04EcPfTlIWRImggVM4GiaeKUJTzZs5YJw6wpvKBnE4k7Gajks4cYSc3UbDkjM1ZgPqhL5PgkFqSQ/ZcftkYWqb7Sy717A4DejZHBxTpwBVTPYwhxpWjSAeHq3RuGeuFVwsm0o1kyii3HTkQ6FHRac0yz2lm8qLFvQzqdIgTjhV0RTkswyiqwBdxegaQNcw+hygzzG6DtB1jL4A6AuMbgB0A6MvAfoSo5sA3cToFkC3MPoKoK8wug3QbYy+BuhrjO4AdAejbwD6BqO7AN3F6FuAvsXoO4C+w+geQPcwug/QfYx2ANrBaBegXYweAPQAo4cAPcRoD6A9jB4B9OiSh1C+lwYE8Fap4NVgIx8aFQK0Oac8BCYtRet4GNA4y8/ZlKLhxnX3isSexzZAbYw6AHUwOgDoAKMUoBSjQ4AOMToC6AijLkBdjDKAMoy+B+h7jJ4C9BSjHkA9jPoA9TEaADTAaP0pVWiI0QigEUY/APQDRjlAOUZjgMYYFQAVGE0AmmB0DNAxRs8AeobRCUAnGJ0CdIrRc4CeX7KwYBvIhC+1onwvyLwulhlnJBYyu2qCGD8rkjpXmql0raauVtRVTV2vqOuaullRNzV1q6JuaepORd3R1L2KuqephxX1UFN7FbVXTJGsUOIfFjE3TzxV6aJS0KwubszFDU2cv6nc6tupBu27VMyZ4kJz0pk76ehidy52dfFgLh5oorcQnofDE9XwBAwv3ya5LluaOJ2LU108n4vnmtgrtZ6mHJXKkabEvfn9Xixs9eH3wjP88Kv967gsZ/MCaMQpPV2EbOJFrpoMCczq16KrFocdJIuUqobzKEKfmmVN6MwqrgVTFmXHK7JE8+hQyDUJRh41m+1H1qPmisXZyBUWzztrHtcnUaX+s+UezEc4brYLq5MavxaOCz+hPAyICLkqkFPVO7OruNSNOYfWsvsa5l3Ci1gXrFXv1THv8tAu3JY3uTszuMSRfVE+0xELUnXN2SSTDqjUZ5c1q8FgUngZyrpcHp/qkwLx5CJkFxeTftpcyeqWhMtUclJ4TIKBLOmpSHO7hTstMWTNgmtZs0Czln3sf20V5Ce+bkwm1zCWEDKO1Wta0IlI48R+Tx2hvnbUISHnkoJVL/rzZbw/W/cH+VZRX2dsMqUxI4HJgvLz0+KoEWehSj24G/ZrA0dcCzSnp5fij7TzKTc4v9xAO7M8doppJWjPmROqVGSDyOt+np3X3Yf51CLnYawN5xS4cz2WKVKlBrUDdFSenyPtaM3zi/xoVQlFbTy3GLAC1IgRjWTiN+rLKojLJvPCoH63LEfk/ysgp6SUqxqo3UkxXHEzVwzpzhzPQr/KvVvxD3ktBSgH3q4r2/k421cFtn0R1/ZVUU0ET1S9NpanUrER8w71xukvNdv1r6h6o7vyuN163H77c/Pp7+UX1lvG98aPxn2jbfxqPDVeGrtGx3CMP4w/jb+Mv+/8u3x3+eHyTwV680Zp852x8Fv+5T8c4Ofm