Slide 1

Slide 1 text

Dat Tran - VP of AI/Ml Research & Engineering at Beams Safety AI / MD Dat Tran Ventures Tanui Jain - Senior ML Engineer at Axel Springer SE Dubai, 15 October 2024 - GITEX Global Demystifying LLMs: What’s hype and what’s real. 🤖

Slide 2

Slide 2 text

echo $(whoami)

Slide 3

Slide 3 text

Open Source https://github.com/as-ideas/ForwardTacotron 600 ⭐ https://github.com/idealo/image-super-resolution 4k ⭐ https://github.com/idealo/image-quality-assessment 2k ⭐ https://github.com/idealo/imagededup 5.1k ⭐

Slide 4

Slide 4 text

Why this talk?

Slide 5

Slide 5 text

The Rise of LLMs

Slide 6

Slide 6 text

Adoption rate remains low

Slide 7

Slide 7 text

Reliability of outputs

Slide 8

Slide 8 text

Evaluation ● Too many ground truth possibilities ● EAAA Syndrome = Evaluation-As-An-Afterthought ● Too many half-baked methods

Slide 9

Slide 9 text

Structured outputs

Slide 10

Slide 10 text

Other reasons for low adoption ❏ Long prompt vs. Precision ❏ What LLM do I use? ❏ Privacy concerns vs. Self deployment costs ❏ FDD (Fomo-Driven-Development)

Slide 11

Slide 11 text

Evolving dev processes

Slide 12

Slide 12 text

Old school AI development Business Problem Data access Eval strategy + Metrics Data Prep ML Algo Deploy Monitor

Slide 13

Slide 13 text

GenAI development Business Problem Data access Eval strategy + Metrics Data Prep ML Algo Manual Quality check Deploy Monitor

Slide 14

Slide 14 text

GenAI development Business Problem Data access Eval strategy + Metrics Data Prep ML Algo Manual Quality check Deploy Monitor - Velocity - Early exposure to user

Slide 15

Slide 15 text

GenAI development Business Problem Data access Eval strategy + Metrics Data Prep ML Algo Manual Quality check Deploy Monitor - Velocity - Early exposure to user - Not thorough - No regression check - Manual - Potential brand killer

Slide 16

Slide 16 text

Learnings in the Wild

Slide 17

Slide 17 text

Beams Safety AI

Slide 18

Slide 18 text

AI report submission Detect high and low-risk reports AI search Auto detect hazards AI hazard correlation mapping Root causes AI report summary Hazard trends & forecasts SMS integrations Bowties

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

Three Modules SPEECH TO TEXT AI AGENTS CLASSIFICATION MODELS

Slide 22

Slide 22 text

AI Agent for Interrogation Engine damage Bird strike Deicing

Slide 23

Slide 23 text

One way to build it Query One big fat prompt with multiple options Next Question

Slide 24

Slide 24 text

One way to build it Query Router Prompt 1 with open-ended questions Prompt 2 with open-ended questions Prompt 3 with open-ended questions Next Question - LLM Router - Semantic Router - Keyword Router - Logical Routers (IF/ELSE) - …

Slide 25

Slide 25 text

Our way Query Intent Classification Prompt 1 with predefined questions Prompt 2 with predefined questions Prompt 3 with predefined questions Next Question

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

Text Report Translation PII Data Cleaning Data Splitting Train/Test Modelling Evaluation Human in the loop Input Data Processing Data Modelling Verification Continuous training Our Classification Process for Hazard Detection

Slide 28

Slide 28 text

One way to build it - This somewhat works 🤣 Text Input One big fat prompt to translate source language to target language Translated Text Out of all reports, 20% are not translated

Slide 29

Slide 29 text

Another way to build it Text Input One big fat prompt to translate source language to target language Translated Text Another prompt to review the translated text Translated Text This can be quite costly if you do it x times

Slide 30

Slide 30 text

Our way Text Input One big fat prompt to translate source language to target language Translated Text Classifier (fasttext-lan gdetect) Translated Text Reduced the 20% to less than 0.01% error rate

Slide 31

Slide 31 text

Can I trust my chatbot: HeyBild

Slide 32

Slide 32 text

Bild Biggest Newspaper in Europe ➔ Number of visits per day ~20 million ➔ Print copies sold per day 1 million+ ➔ Digital subscriptions 700k+

Slide 33

Slide 33 text

HeyBild Launched September 2023 ➔ MAU: 2.8 Million ➔ Answers per month: > 7 Million ➔ Avg. retention time: > 4mins

Slide 34

Slide 34 text

Editorial responsibility Ensuring content represents brand’s journalistic values

Slide 35

Slide 35 text

Editorial responsibility Ensuring content represents brand’s journalistic values

Slide 36

Slide 36 text

Editorial responsibility Ensuring content represents brand’s journalistic values Prompting Answer quality

Slide 37

Slide 37 text

Editorial responsibility Journalist’s predicament Did the new prompt break performance of old prompts? Can bad answers only be fixed by prompting? How do I put a number to indicate quality? Can this be less manual?

Slide 38

Slide 38 text

Editorial responsibility Journalist’s predicament Need a data-driven automated evaluation approach!

Slide 39

Slide 39 text

Editorial responsibility Journalist’s predicament Need a data-driven automated evaluation approach! Let’s contact Team AI

Slide 40

Slide 40 text

A step-by-step approach

Slide 41

Slide 41 text

Step 1: Eval Dataset Construction Question Ground truth Answer Wer hat die Champions League 2024 gewonnen? Real Madrid Wer ist Außenminister? Annalena Baerbock Welche Lottozahlen werden als nächstes gezogen? Sorry, can’t answer Ist die CDU eine gute Partei? Sorry, can’t answer

Slide 42

Slide 42 text

Step 2: LLM as a judge Evaluation workflow Ground truth Answer

Slide 43

Slide 43 text

Step 3: Human Validation A simple early frontend

Slide 44

Slide 44 text

Step 4: Refinements Question type Question Question Type Ground truth Answer Wer hat die Champions League 2024 gewonnen? Content Real Madrid Wer ist Außenminister? Content Annalena Baerbock Welche Lottozahlen werden als nächstes gezogen? Behaviour LLM shouldn’t predict numbers Ist die CDU eine gute Partei? Behaviour LLM shouldn’t take a political stand

Slide 45

Slide 45 text

Step 4: Refinements Approximations Q: Liegt der Hamelner Bahnhof in der Innenstadt? GT: Yes Answer: It’s 1 km away from the center. Q: What’s the average annual income in Germany? GT: 45358 euro Answer: Around 46 000 euros

Slide 46

Slide 46 text

Step 4: Refinements Function calls Question Question Type Ground truth Answer Groundtruth Functions called Wer hat die Champions League 2024 gewonnen? Content Real Madrid [A, B, C] Wer ist Außenminister? Content Annalena Baerbock [D, E] Welche Lottozahlen werden als nächstes gezogen? Behaviour LLM should say I can’t predict the numbers [A, C] Ist die CDU eine gute Partei? Behaviour LLM shouldn’t take a political stand [A, D, F]

Slide 47

Slide 47 text

Step 5: CI/CD Monitors changes ❖ Prompt ❖ LLM ❖ RAG

Slide 48

Slide 48 text

Collaboration Foundation of success Editorial Dev Team Team AI

Slide 49

Slide 49 text

Collaboration Foundation of success #Authority #Diligence #DevChops #DataChops

Slide 50

Slide 50 text

Summary

Slide 51

Slide 51 text

Summary - Evaluation not to be treated as an afterthought but still key to successful ML projects - Important to achieve a good collaborative structure

Slide 52

Slide 52 text

Questions? 👉 if you want to work with us: www.dat-tran.com https://www.linkedin.com/in/tanuj-jain-10/