Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

Hi I’m Landon πŸ‘‹β€ Senior Monkey Patcher @testdouble

Slide 4

Slide 4 text

@thedayisntgray Linkedin Mastodon Twitter Senior Software Consultant @testdouble

Slide 5

Slide 5 text

There was a question that plagued me… πŸ€”

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

● Problem ● Collect Data ● Data Preparation ● Train Model ● Make Predictions

Slide 8

Slide 8 text

But before that… πŸ”¨ πŸ“š

Slide 9

Slide 9 text

Jupyter Notebook + iruby

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

Libraries πŸ“š

Slide 13

Slide 13 text

require 'numo/narray' require 'daru' require 'rumale'

Slide 14

Slide 14 text

● Problem ● Collect Data ● Data Preparation ● Train Model ● Make Predictions

Slide 15

Slide 15 text

🌩

Slide 16

Slide 16 text

🌑 Max Temperature

Slide 17

Slide 17 text

● Problem ● Collect Data ● Data Preparation ● Train Model ● Make Predictions

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

● Problem ● Collect Data ● Data Preparation ● Train Model ● Make Predictions

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

5 Core Values: PRCP = Precipitation SNOW = Snowfall SNWD = Snow depth TMAX = Maximum temperature TMIN = Minimum temperature

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

Clean Up Data ● Handling Missing values ● Outliers ● Malformed Data ● Eliminate duplicate values

Slide 25

Slide 25 text

Clean Up Data

Slide 26

Slide 26 text

Who’s Tired πŸ˜ͺ

Slide 27

Slide 27 text

80/20 Rule

Slide 28

Slide 28 text

● Problem ● Collect Data ● Data Preparation ● Train Model ● Make Predictions

Slide 29

Slide 29 text

Split the data Training Test Dataset

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

Linear regression - is an attempt to model the relationship between two variables by fitting a linear equation to the observed data.

Slide 32

Slide 32 text

Y = mx + b

Slide 33

Slide 33 text

f(x) = mx + b

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

Best Fit Line

Slide 36

Slide 36 text

Train Model

Slide 37

Slide 37 text

πŸŽ‰

Slide 38

Slide 38 text

● Problem ● Collect Data ● Data Preparation ● Train Model ● Make Predictions

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

● Problem ● Collect Data ● Data Preparation ● Train Model ● Make Predictions

Slide 41

Slide 41 text

Thank You!

Slide 42

Slide 42 text

🎁

Slide 43

Slide 43 text

https://tinyurl.com/y8anhkrv Repository

Slide 44

Slide 44 text

No content