Slide 65
Slide 65 text
参考⽂献
• DQN
• Mnih et al., "Playing Atari with Deep Reinforcement Learning", arXiv preprint
arXiv:1312.5602, 2013. https://arxiv.org/abs/1312.5602
• Mnih et al., "Human-level control through deep reinforcement learning", Nature, 2015.
https://www.nature.com/articles/nature14236
• Prioritized Experience Replay
• Schaul et al., "Prioritized Experience Replay", ICLR2016, 2016.
https://arxiv.org/abs/1511.05952
• Rainbow
• Hessel et al., "Rainbow: Combining Improvements in Deep Reinforcement Learning", AAAI-
18, 2018.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17204/16680
• Ape-X
• Horgan et al., "Distributed Prioritized Experience Replay", ICLR2018, 2018.
https://openreview.net/forum?id=H1Dy---0Z
• R2D2
• Kapturowski et al., "Recurrent Experience Replay in Distributed Reinforcement Learning",
ICLR2019, 2019. https://openreview.net/forum?id=r1lyTjAqYX
• MuZero
• Schrittwieser et al., "Mastering Atari, Go, Chess and Shogi by Planning with a Learned
Model", arXiv preprint arXiv:1911.08265, 2019. https://arxiv.org/abs/1911.08265
• W. Duvaud, "MuZero General: Open Reimplementation of MuZero", GitHub repository, 2019.
https://github.com/werner-duvaud/muzero-general
• David Foster, "How To Build Your Own MuZero AI Using Python (Part 1/3)", Medium, 2019.
https://medium.com/applied-data-science/how-to-build-your-own-muzero-in-python-
f77d5718061a
• 布留川 英⼀, "AlphaZero 深層学習・強化学習・探索 ⼈⼯知能プログラミング実践⼊⾨", ボー
ンデジタル, 2019. https://www.borndigital.co.jp/book/14383.html
• Agent57
• Badia et al., "Agent57: Outperforming the Atari Human Benchmark", arXiv preprint
arXiv:2003.13350, 2020. https://arxiv.org/abs/2003.13350
• Badia et al., "Never Give Up: Learning Directed Exploration Strategies", ICLR2020, 2020.
https://openreview.net/forum?id=Sye57xStvB
• Burda et al., "Exploration by Random Network Distillation", arXiv preprint arXiv:1810.12894,
2018. https://arxiv.org/abs/1810.12894
• London Machine Learning Meetup, "Charles Blundell - Agent57: Outperforming the Atari
Human Benchmark", YouTube, 2020. https://youtu.be/VQEg8aSpXcU
• Sutton and Barto の強化学習の教科書
• Sutton et al., "Reinforcement Learning: An Introduction second edition", MIT Press, 2018.
http://incompleteideas.net/book/the-book-2nd.html
• Hide and Seek かくれんぼ
• Baker et al., "Emergent Tool Use From Multi-Agent Autocurricula", ICLR2020, 2020.
https://openreview.net/forum?id=SkxpxJBKwS
• Autocurricula
• Leibo et al., "Autocurricula and the Emergence of Innovation from Social Interaction: A
Manifesto for Multi-Agent Intelligence Research", arXiv preprint arXiv:1903.00742, 2019.
https://arxiv.org/abs/1903.00742
• 奥村さんの強化学習アーキテクチャ勉強会での発表スライド
• “DQNからRainbowまで 〜深層強化学習の最新動向〜”
https://www.slideshare.net/juneokumura/dqnrainbow
• “深層強化学習の分散化・RNN利⽤の動向〜R2D2の紹介をもとに〜”
https://www.slideshare.net/juneokumura/rnnr2d2
• 関⾕さんの強化学習アーキテクチャ勉強会での発表スライド
• “強化学習の分散アーキテクチャ変遷” https://www.slideshare.net/eratostennis/ss-
90506270
• 向井さんの強化学習アーキテクチャ勉強会での発表スライド
• ” RNDは如何にしてモンテスマズリベンジを攻略したか”
https://www.slideshare.net/ssuser1ad085/rnd-124137638
• 三好さんのDo2dle勉強会での発表スライドとコード
• “⼈⼯知能と進化論” https://do2dle.connpass.com/event/161217/
• Ray/RLlib
• Moritz et al., "Ray: A Distributed Framework for Emerging AI Applications", 13th USENIX
Symposium on Operating Systems Design and Implementation, 2018.
https://www.usenix.org/conference/osdi18/presentation/moritz
• Liang et al., "RLlib: Abstractions for Distributed Reinforcement Learning", ICML 2018, 2018.
https://arxiv.org/abs/1712.09381
• The Ray Team, "Ray - Fast and Simple Distributed Computing", 2020. https://ray.io/
• 全脳アーキテクチャハッカソン
• 全脳アーキテクチャ・イニシアティブ, "第4回全脳アーキテクチャハッカソン", 2018.
https://wba-initiative.org/3401/
• Animal-AI Olympics
• Beyret et al., "The Animal-AI Environment: Training and Testing Animal-Like Artificial
Cognition", arXiv preprint arXiv:1909.07483, 2019. https://arxiv.org/abs/1909.07483
• Crosby et al.,"The Animal-AI Testbed", 2020. http://animalaiolympics.com/AAI/
• 本⽇の発表のソースコード/設定ファイル
• “分散計算フレームワークRayによる分散型強化学習実装の試み”
https://github.com/susumuota/distributed_experience_replay
• 本⽇の発表のconnpassページ(Do2dle勉強会)
• https://do2dle.connpass.com/event/178184/