Slide 16
Slide 16 text
Reference III
Shohei Shimizu. LiNGAM: Non-Gaussian methods for estimating causal structures.
Behaviormetrika, 41(1):65–98, 2014.
Shohei Shimizu. Statistical Causal Discovery: LiNGAM Approach. Springer, Tokyo, 2022.
Shohei Shimizu, Patrik O. Hoyer, Aapo Hyv¨
arinen, and Antti Kerminen. A linear non-Gaussian
acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.
Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT
Press, 2001. 2nd ed.
D. Takahashi, S. Shimizu, and T. Tanaka. Counterfactual explanations of black-box machine
learning models using causal discovery with applications to credit rating. In Proc. Int. Joint
Conf. on Neural Networks (IJCNN2024), part of the 2024 IEEE World Congress on
Computational Intelligence (WCCI2024), 2024.
Masayuki Takayama, Tadahisa Okuda, Thong Pham, Tatsuyoshi Ikenoue, Shingo Fukuma,
Shohei Shimizu, and Akiyoshi Sannai. Integrating large language models in causal discovery:
A statistical causal approach. arXiv preprint arXiv:2402.01454, 2024.
Tatsuya Tashiro, Shohei Shimizu, Aapo Hyv¨
arinen, and Takashi Washio. ParceLiNGAM: A
causal ordering method robust against latent confounders. Neural Computation, 26(1):
57–83, 2014.
Y. Samuel Wang and Mathias Drton. Causal discovery with unobserved confounding and
non-gaussian data. Journal of Machine Learning Research, 24(271):1–61, 2023. URL
http://jmlr.org/papers/v24/21-1329.html.
SHIMIZU Shohei (Shiga Univ & RIKEN) 5th July 2024 16 / 17