Slide 23
Slide 23 text
Global in space computation=Gamma operators
Define Gamma one bilinear forms by
Γ1
(f, f) = aT∇f, aT∇f
Rn
, Γz
1
(f, f) = zT∇f, zT∇f
Rm
.
Define Gamma two bilinear forms by
(i) Gamma two operator:
Γ2
(f, f) =
1
2
LΓ1
(f, f) − Γ1
(Lf, f).
(ii) Generalized Gamma z operator:
Γz,π
2
(f, f) =
1
2
LΓz
1
(f, f) − Γz
1
(Lf, f)
+ divπ
z
Γ1,∇(aaT)
(f, f) − divπ
a
Γ1,∇(zzT)
(f, f) .
(iii) Irreversible Gamma operator:
ΓIa,z
(f, f) = (Lf + Lz
f) ∇f, γ −
1
2
∇ Γ1
(f, f) + Γz
1
(f, f) , γ .
23