Slide 1

Slide 1 text

REACTIVE APPLICATIONS WITH OM PIERRE-YVES RITSCHARD @PYR WEBMARDI

Slide 2

Slide 2 text

@PYR CTO at exoscale, swiss cloud hosting Open source developer: pithos, cyanite, riemann, collectd, cloudstack Cassandra MVP

Slide 3

Slide 3 text

AIM OF THIS TALK An introduction to clojure & clojurescript Show-casing a different method of building SPAs

Slide 4

Slide 4 text

OUTLINE What is Om ? Clojure(script) whirlwind tour Better views with React An Om walkthrough

Slide 5

Slide 5 text

OM

Slide 6

Slide 6 text

WHAT IT SAYS ON THE BOX A ClojureScript interface to Facebook's React. https://github.com/omcljs/om

Slide 7

Slide 7 text

OM SPECIFICS Small facade (< 2kLoC) for React No two-way binding! Data-based approach to UI Promotes immutability Interacts well with concurrency routines

Slide 8

Slide 8 text

OM IN THE LARGE Circle CI Prismatic Percursor Goya

Slide 9

Slide 9 text

OM AT EXOSCALE Warp Internal tools Our portal is still Angular.JS

Slide 10

Slide 10 text

BETTER VIEWS WITH REACT

Slide 11

Slide 11 text

WHAT IT SAYS ON THE BOX A JavaScript library for building user interfaces https://facebook.github.io/react

Slide 12

Slide 12 text

JUST THE UI React takes care of the view and does not care about the rest of the application structure. As a library it integrates well with other projects, such as Backbone.

Slide 13

Slide 13 text

VIRTUAL DOM Multiple buffering approach for the DOM. Changes are produced on a virtual DOM, differences are produced to the actual DOM in a single step.

Slide 14

Slide 14 text

DATA FLOW Departure from two-way binding. Easier to reason about. Say goodbye to d i g e s t a l r e a d y i n p r o g r e s s .

Slide 15

Slide 15 text

A COMPONENT BASED APPROACH Each component is responsible for a subset of the DOM and may implement functions which correspond to elements of the component's lifecycle: render (or renderState) willMount didMount willUnmount didUnmount

Slide 16

Slide 16 text

THE PROBLEM WITH REACT r e n d e r : f u n c t i o n ( ) { r e t u r n ( < d i v > < h 3 > T O D O < / h 3 > < T o d o L i s t i t e m s = { t h i s . s t a t e . i t e m s } / > < f o r m o n S u b m i t = { t h i s . h a n d l e S u b m i t } > < i n p u t o n C h a n g e = { t h i s . o n C h a n g e } v a l u e = { t h i s . s t a t e . t e x t } / > < b u t t o n > { ' A d d # ' + ( t h i s . s t a t e . i t e m s . l e n g t h + 1 ) } < / b u t t o n > < / f o r m > < / d i v > ) ; }

Slide 17

Slide 17 text

CLOJURE(SCRIPT): A WHIRLWIND TOUR

Slide 18

Slide 18 text

WHAT IT SAYS ON THE BOX Clojure is a dynamic programming language that targets the Java Virtual Machine (and the CLR, and JavaScript). http://clojure.org

Slide 19

Slide 19 text

CLOJURE SPECIFICS Dynamically typed LISP Homo-iconic Macros Functional programming language Immutable data structures & STM Runtime polymorphism Host independant

Slide 20

Slide 20 text

CLOJURE LIBRARIES & TOOLING Typing Pattern-matching Concurrency routines Building and running

Slide 21

Slide 21 text

DYNAMICALLY TYPED LISP ( + 1 2 ) ; ; = > 3 ( g e t { : f o o " b a r " } : f o o ) ; ; = > " b a r " ( c o u n t [ : a : b : c : d ] ) ; ; = > 4 ( l e t [ n 4 ] ( * n n ) ) ; ; = > 1 6

Slide 22

Slide 22 text

DYNAMICALLY TYPED LISP: VARIABLES ( d e f m y - v a r " h e l l o " ) ; ; = > # ' m y - v a r ( d e f n f a c t o [ n ] ( r e d u c e * ( m a p i n c ( r a n g e n ) ) ) ) ; ; = > # ' f a c t o

Slide 23

Slide 23 text

DYNAMICALLY TYPED LISP: LOOPS AND CONDITIONALS ( i f c o n d i t i o n ? t r u e - f o r m f a l s e - f o r m ) ( w h e n c o n d i t i o n ? t r u e - f o r m 1 t r u e - f o r m 2 ) ( d o s e q [ i ( r a n g e 1 0 ) ] ( p r i n t l n i ) ) 0

Slide 24

Slide 24 text

HOMO ICONIC ; ; k e y w o r d s : f i r s t - n a m e ; ; m a p s { : u s e r " p y r " : f i r s t - n a m e " P i e r r e - Y v e s " : l a s t - n a m e " R i t s c h a r d " } ; ; v e c t o r s [ 0 1 2 : f o o 3 4 : b a r ] ; ; s e t s # { : e g g p l a n t : z u c c h i n i : p o t a t o : c a r o t } ; ; f u n c t i o n s # ( + % 1 ) ; ; r e g e x # " ^ m y n a m e i s ( . * ) $ "

Slide 25

Slide 25 text

MACROS ( d e f m a c r o u n l e s s [ e x p & b o d y ] ( i f - n o t ~ e x p ( d o ~ @ b o d y ) ) ) ( u n l e s s s o m e - c o n d i t i o n d o - t h i s d o - t h a t )

Slide 26

Slide 26 text

MACROS ( d e f n f a c t o [ n ] ( - > > ( r a n g e 1 0 ) ( m a p i n c ) ( r e d u c e * ) ) )

Slide 27

Slide 27 text

DESTRUCTURING ( d e f u s e r { : u s e r " p y r " : f i r s t - n a m e " P i e r r e - Y v e s " : l a s t - n a m e " R i t s c h a r d " } ) ( l e t [ { : k e y s [ f i r s t - n a m e l a s t - n a m e ] } u s e r ] ( p r i n t l n " H e l l o " f i r s t - n a m e l a s t - n a m e ) )

Slide 28

Slide 28 text

FUNCTIONAL PROGRAMMING It is better to have 100 functions operate on one data structure than 10 functions on 10 data structures. —Alan Perlis ( - > { : u s e r " p y r " : h i s t o r y [ ] : s t a t s { : s e s s i o n - c o u n t 0 : l o g g e d - i n f a l s e } } ( a s s o c - i n [ : s t a t s : l o g g e d - i n ] t r u e ) ( u p d a t e - i n [ : s t a t s : s e s s i o n - c o u n t ] i n c ) ( u p d a t e - i n [ : h i s t o r y ] c o n j { : a c t i o n : l o g - i n : u s e r : p y r } ) )

Slide 29

Slide 29 text

FUNCTIONAL PROGRAMMING (CONT.) much better than underscore.js ; ; c o m p o s i t i o n ( c o m p n a m e k e y ) ( m a p ( c o m p n a m e k e y ) { : a c t i o n : l o g - i n : u s e r " p y r " } ) ; ; = > [ " a c t i o n " " u s e r " ] ; ; p a r t i a l a p p l i c a t i o n / c u r r y i n g ( d e f m y - i n c ( p a r t i a l + 1 ) ) ; ; c l o s u r e s ( d e f n i n c r e m e n t - b y [ n ] ( f n [ x ] ( + n x ) ) ) ( m a p ( i n c r e m e n t - b y 3 ) ( r a n g e 3 ) ) ; ; = > [ 3 4 5 ]

Slide 30

Slide 30 text

IMMUTABLE DATASTRUCTURES ( d e f u s e r - d a t a { : u s e r " p y r " : s t a t s { : s e s s i o n - c o u n t 0 } } ) ( d e f n r e c o r d - s e s s i o n [ u d ] ( u p d a t e - i n u d [ : s t a t s : s e s s i o n - c o u n t ] i n c ) ) ( r e c o r d - s e s s i o n u s e r - d a t a ) ; ; = > { : u s e r " p y r " : s t a t s { : s e s s i o n - c o u n t 1 } } u s e r - d a t a ; ; = > { : u s e r " p y r " : s t a t s { : s e s s i o n - c o u n t 0 } }

Slide 31

Slide 31 text

STM ( d e f u s e r - d a t a ( a t o m { : u s e r " p y r " : s t a t s { : s e s s i o n - c o u n t 0 } } ) ) ( d e f n r e c o r d - s e s s i o n [ u d ] ( u p d a t e - i n u d [ : s t a t s : s e s s i o n - c o u n t ] i n c ) ) ( s w a p ! u s e r - d a t a r e c o r d - s e s s i o n ) ; ; = > { : u s e r " p y r " ; ; : s t a t s { : s e s s i o n - c o u n t 1 } } @ u s e r - d a t a ; ; = > { : u s e r " p y r " ; ; : s t a t s { : s e s s i o n - c o u n t 1 } }

Slide 32

Slide 32 text

RUNTIME POLYMORPHISM: MULTIMETHODS ( d e f m u l t i h a n d l e - e v e n t : a c t i o n ) ( d e f m e t h o d h a n d l e - e v e n t : l o g - i n [ { : k e y s [ u s e r ] } ] ( p r i n t l n " u s e r " u s e r " h a s l o g g e d i n " ) ) ( d e f m e t h o d h a n d l e - e v e n t : l o g - o u t [ { : k e y s [ u s e r ] } ] ( p r i n t l n " u s e r " u s e r " h a s l o g g e d i n " ) ) ( h a n d l e - e v e n t { : a c t i o n : l o g - i n : u s e r " p y r " } ) ( h a n d l e - e v e n t { : a c t i o n : l o g - o u t : u s e r " p y r " } )

Slide 33

Slide 33 text

RUNTIME POLYMORPHISM: PROTOCOLS ( d e f p r o t o c o l K V D a t a b a s e ( s e t k e y ! [ t h i s k v ] ) ( g e t k e y [ t h i s k ] ) ) ( d e f n a t o m - d a t a b a s e [ ] ( l e t [ d b ( a t o m { } ) ] ( r e i f y K V D a t a b a s e ( s e t k e y ! [ t h i s k v ] ( s w a p ! d b a s s o c k v ) ) ( g e t k e y [ t h i s k ] ( g e t @ d b k ) ) ) ) )

Slide 34

Slide 34 text

NAMESPACES ( n s w e b a p p . f r o n t e n d ( : r e q u i r e [ o m . d o m : a s d o m ] [ s a b l o n o . c o r e : r e f e r - m a c r o s [ h t m l ] ] ) )

Slide 35

Slide 35 text

HOST INDEPENDANT JVM, CLR, Javascript (relies on Google Closure). Interop is a first class citizen: ( . l o g j s / w i n d o w . c o n s o l e " h e l l o " )

Slide 36

Slide 36 text

SIMPLE EXAMPLE: AN HTTP + JSON REQUEST: ( n s f o o b a r ( : r e q u i r e [ a j a x . c o r e : r e f e r [ G E T ] ] ) ) ( d e f n h a n d l e - r e s p o n s e [ d a t a ] . . . ) ; ; A u t o m a t i c a l l y i n f e r s f o r m a t f r o m C o n t e n t - T y p e ( G E T " / m y - e n d p o i n t " { : h a n d l e r h a n d l e - r e s p o n s e } ) ; ; H i n t a t f o r m a t ( P U T " / m y - e n d p o i n t " { : p a r a m s { : f o o " b a r " } : f o r m a t : j s o n } )

Slide 37

Slide 37 text

CLOJURESCRIPT ESSENTIAL LIBS: CORE.ASYNC ( n s t a b l e f l i p . c o r e ( : r e q u i r e - m a c r o s [ c l j s . c o r e . a s y n c . m a c r o s : r e f e r [ g o ] ] ) ( : r e q u i r e [ c l j s . c o r e . a s y n c : r e f e r [ t i m e o u t < ! ] ] ) ) ( g o ( l o o p [ [ c u r & n e x t ] ( c y c l e [ " ┬ ─ ┬ ノ( º _ º ノ) " " ( ╯ ° □ ° )╯ ︵ ┻ ━ ┻ " " ( ╯ ° □ ° )╯ ┬ ─ ┬ " " ( ╯ ° □ ° )╯ ┻ ━ ┻ " " ( ╯ ° □ ° )╯ ┬ ─ ┬ " " ( ╯ ° □ ° )╯ ┻ ━ ┻ " ] ) ] ( . r e p l a c e S t a t e j s / w i n d o w . h i s t o r y # j s { } " " ( s t r " / # " c u r ) ) ( < ! ( t i m e o u t 1 0 0 0 ) ) ( r e c u r n e x t ) ) )

Slide 38

Slide 38 text

CLOJURESCRIPT ESSENTIAL LIBS: CORE.MATCH ( d o s e q [ n ( r a n g e 1 1 0 1 ) ] ( p r i n t l n ( m a t c h [ ( m o d n 3 ) ( m o d n 5 ) ] [ 0 0 ] " F i z z B u z z " [ 0 _ ] " F i z z " [ _ 0 ] " B u z z " : e l s e n ) ) )

Slide 39

Slide 39 text

CLOJURESCRIPT ESSENTIAL LIBS: OPTIONAL TYPING Compile time: core.typed Runtime: schema

Slide 40

Slide 40 text

BUILDING CLOJURESCRIPT Not bound to a specific build tool People usually choose (upside: no grunt or gulp debate) leiningen

Slide 41

Slide 41 text

BUILDING CLOJURESCRIPT ( d e f p r o j e c t m y - p r o j e c t " 0 . 1 . 0 " : d e p e n d e n c i e s [ [ o r g . c l o j u r e / c l o j u r e " 1 . 6 . 0 " ] [ o r g . c l o j u r e / c l o j u r e s c r i p t " 0 . 0 - 3 1 2 6 " ] [ o r g . o m c l j s / o m " 0 . 8 . 8 " ] : p l u g i n s [ [ l e i n - c l j s b u i l d " 1 . 0 . 5 " ] ] : c l j s b u i l d { : b u i l d s [ { : i d " d e v " : s o u r c e - p a t h s [ " s r c " ] : c o m p i l e r { : m a i n " j o b s . f r o n t e n d " : o u t p u t - t o " r e s o u r c e s / p u b l i c / j s / a p p . j s " : o u t p u t - d i r " r e s o u r c e s / p u b l i c / j s " : o p t i m i z a t i o n s : n o n e : s o u r c e - m a p t r u e } } ] } )

Slide 42

Slide 42 text

COMPILING AND RUNNING l e i n c l j s b u i l d o n c e l e i n c l j s b u i l d a u t o

Slide 43

Slide 43 text

OM WALKTHROUGH

Slide 44

Slide 44 text

BINDING CLOJURESCRIPT AND REACT All application state is stored in an atom. Changes in an atom result in UI updates Binds to react through protocols

Slide 45

Slide 45 text

BINDING CLOJURESCRIPT AND REACT: PROTOCOLS A component reifies: IRenderState or IRender ( f n [ a p p o w n e r ] ( r e i f y I R e n d e r ( r e n d e r [ t h i s ] ( d o m / h 1 " h e l l o " ) ) ) )

Slide 46

Slide 46 text

OM APPLICATION BASICS Applications are trees of components bound to a part of the application state which generate nodes in the virtual dom.

Slide 47

Slide 47 text

OM APPLICATION BASICS ( d e f a p p - s t a t e ( a t o m { : j o b s [ { : t i t l e " d e v e l o p e r " : c o m p a n y " r a i l s s h o p " } { : t i t l e " s y s a d m i n " : c o m p a n y " p h p s h o p " } ] } ) ) ( d e f c o m p o n e n t j o b - l i n e [ p o s i t i o n o w n e r ] ( r e n d e r [ t h i s ] ( l e t [ t i t l e ( : t i t l e a p p ) c o m p a n y ( : c o m p a n y p o s i t i o n ) ] ( h t m l [ : l i ( s t r t i t l e " a t " c o m p a n y ) ] ) ) ) ) ( d e f c o m p o n e n t j o b - l i s t [ a p p o w n e r ] ( r e n d e r [ t h i s ] ( l e t [ j o b s ( : j o b s a p p ) ] ( h t m l [ : u l ( o m / b u i l d - a l l j o b - l i n e j o b s ) ] ) ) ) ) ( o m / r o o t j o b - l i s t a p p - s t a t e )

Slide 48

Slide 48 text

OM APPLICATION BASICS

Slide 49

Slide 49 text

ROUTING There is no routing component in om. It's easy to build one leveraging the application state Example approach: https://github.com/pyr/om- jobs/blob/master/src/jobs/router.cljs ; ; P a i r s o f r o u t e t o c o m p o n e n t ( d e f r o u t e s [ " / " v i e w s / j o b s " / j o b / : i d " v i e w s / j o b " / p o s t " v i e w s / j o b - p o s t ] ) ( l e t [ r o u t e r ( r o u t e r / i n i t r o u t e s a p p - s t a t e ) t a r g e t { : t a r g e t ( . g e t E l e m e n t B y I d j s / d o c u m e n t " a p p " ) } ] ( o m / r o o t r o u t e r a p p - s t a t e t a r g e t ) )

Slide 50

Slide 50 text

USER INPUT Two approaches: Local component state Circling back to the global app-state

Slide 51

Slide 51 text

USER INPUT: LOCAL COMPONENT STATE ( d e f c o m p o n e n t j o b - p o s t [ a p p o w n e r ] ( r e n d e r - s t a t e [ t h i s s t a t e ] ( l e t [ t i t l e ( : t i t l e s t a t e ) c o m p a n y ( : c o m p a n y s t a t e ) c r e a t e ! ( : c r e a t e ! a p p ) - > s t a t e ( f n [ k ] ( f n [ e v e n t ] ( o m / s e t - s t a t e ! o w n e r [ k ] ( - > e v e n t . - t a r g e t . - v a l u e ) ) ) ) ] ( h t m l [ : f o r m [ : l a b e l " t i t l e " ] [ : i n p u t { : t y p e " t e x t " : v a l u e t i t l e : o n - c h a n g e ( - > s t a t e : t i t l e ) } ] [ : l a b e l " c o m p a n y " ] [ : i n p u t { : t y p e " t e x t " : v a l u e c o m p a n y : o n - c h a n g e ( - > s t a t e : c o m p a n y ) } ] [ : i n p u t { : t y p e " s u b m i t " : o n - c l i c k ( f n [ _ ] ( c r e a t e ! s t a t e ) ) } ] ] ) ) ) )

Slide 52

Slide 52 text

USER INPUT: GLOBAL STATE ( d e f m o d e l - c h a n ( c h a n ) ) ( g o ( l o o p [ a c t i o n ( < ! m o d e l - c h a n ) ] ( l e t [ t y p e ( : t y p e a c t i o n ) i d ( : i d a c t i o n ) ] ( c o n d p = t y p e : d e l e t e ( s w a p ! a p p - s t a t e d i s s o c i d ) : c r e a t e ( s w a p ! a p p - s t a t e a s s o c i d a c t i o n ) ) ) ) ) ( d e f c o m p o n e n t j o b - l i n e [ a p p o w n e r ] ( r e n d e r [ t h i s ] [ : l i [ : d i v [ : p ( : t i t l e a p p ) " a t " ( : c o m p a n y a p p ) ] [ : b u t t o n { : o n - c l i c k ( f n [ _ ] ( > ! m o d e l - c h a n { : t y p e : d e l e t e : i d ( : i d a p p ) } ) ) } ] ] ] ) )

Slide 53

Slide 53 text

OM USE-CASES

Slide 54

Slide 54 text

COMPARED TO ANGULAR More up-front work Better reasoning around components Not a fit for small CRUD apps

Slide 55

Slide 55 text

BEST FITS Complex app logic Websockets / SSE (event-stream) Multiple presentation of a single source of data

Slide 56

Slide 56 text

WHAT WE DID NOT SAY Infinite undo Component mixins Targets Node.JS Targets JavascriptCore HTML templates Source maps REPLs

Slide 57

Slide 57 text

GOING FURTHER Om: Angular to Om: A simple job board: https://github.com/omcljs/om http://spootnik.org/entries/2014/10/26_from-angularjs-to- om-a-walk-through.html https://github.com/pyr/om-jobs

Slide 58

Slide 58 text

QUESTIONS ?